首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 988 毫秒
1.
王友  曾一文  钟星  刘星  汤泉 《电化学》2018,24(2):174
本文以草酸锂、五氧化二钒、硼酸为原料,二水合草酸为碳原和还原剂,无水乙醇为分散剂,采用球磨法合成了Li3V2(BO3)3/C(LVB/C)复合材料前驱体,后经高温热处理得到LVB/C复合材料. 采用TG-DTA技术对前驱体进行了热分析,通过XRD、SEM、EDS等技术研究了烧结条件对 LVB/C 材料的晶体结构、微观形貌、含碳量的影响. 通过恒流充放电测试、循环性能测试、循环伏安测试和电化学阻抗测试等技术研究了烧结条件对 LVB/C 材料电化学性能的影响. 电化学测试结果表明,800 ℃下烧结10 h得到的样品电化学性能最佳,在50mA•g-1电流密度下,首次充放电比容量分别为427.6mAh•g-1和669.1 mAh•g-1,循环10次后,容量保持率分别为55.4 %和35.2 %.  相似文献   

2.
二氧化钛(TiO2)作为有前景的钠离子电池负极材料, 具有良好的循环稳定性, 但由于其导电率较低, 而导致容量和倍率性能不佳限制了其实际应用. 本文采用喷雾干燥技术制备了氧化石墨烯/纳米TiO2复合材料(GO/TiO2), 通过热处理获得还原氧化石墨烯/TiO2复合材料(RGO/TiO2). 电化学测试结果表明, 还原氧化石墨烯改性的RGO/TiO2复合材料的电化学性能得到显著提升, RGO含量为4.0%(w)的RGO/TiO2复合材料在各种电流密度下的可逆容量分别为183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1)和114.4 mAh·g-1 (600mA·g-1), 而纯TiO2的比容量仅为93.6 mAh·g-1 (20 mA·g-1), 69.6 mAh·g-1 (100 mA·g-1)和26.5 mAh·g-1 (600mA·g-1). 4.0%(w) RGO/TiO2复合材料体现了良好的循环稳定性, 在100 mA·g-1电流密度下充放电循环350个周期后, 比容量仍然保持146.7 mAh·g-1. 同等条件下, 纯TiO2电极比容量只有68.8 mAh·g-1. RGO包覆改性极大提高了TiO2在钠离子电池中的电化学嵌钠/脱钠性能. RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.  相似文献   

3.
本文研究了以碳包覆磷酸钛钠[NaTi2(PO43/C]为负极、活性炭(AC)为正极的超级电容器.以柠檬酸为碳源,采用液相法制备前驱物,利用高温固相反应制备得到NaTi2(PO43/C纳米颗粒.正负极活性物质质量比值为2.2,组装NaTi2(PO43/C//Na2SO4//AC钠离子基水系混合超级电容器.电化学性能测试表明,在电压范围0.15~1.4 V,电流密度为0.5 A·g-1的条件下,该电容器的比功率为121.15 W·kg-1,比能量为18.71 Wh·kg-1.提升电流密度至10 A·g-1,比功率可达2.42 kW·kg-1,相应比能量为14.13 Wh·kg-1.在1 A·g-1的电流密度下,循环1000圈,该电容器的比容量仍保持在初始值的76%.该器件很有希望作为高功率的辅助能量储存设备实现应用.  相似文献   

4.
李婷  陈重学  曹余良  杨汉西 《电化学》2012,18(4):291-294
以纳米TiN为研磨剂,采用机械球磨技术制备了NaF-M(M = Fe, Cu)纳米复合物,探索了这类复合物作为钠离子电池转换正极材料的可能性. 电化学测试表明,NaF-Fe和NaF-Cu纳米复合物电极在钠离子电解液中能实现与Na+的逆向转换反应,其可逆放电容量达150 mAh.g-1以上,并具有较好的循环寿命. 只要创造了适合相转变反应进行的微区结构,钠离子的转换反应也可以通过可逆的电化学转换反应实现,并从起始的富钠放电态直接充电至贫钠的荷电态. 本工作为开发高容量钠离子电池正极材料提供了新途径.  相似文献   

5.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

6.
以具有高比表面积、分级孔结构和优良导电性的碳纳米笼(CNCs)为载体,制得了粒子尺寸为10~25 nm且高度分散的LiFePO4/CNCs复合物.以LiFePO4/CNCs复合物作为锂离子电池的正极材料,在0.1 C倍率下首次放电比容量达到163 mAh·g-1,15 C和30 C倍率下的放电比容量可达96和75 mAh·g-1;在15 C倍率下循环200圈后,其放电比容量仍保持在92 mAh·g-1,显著优于LiFePO4/CNTs复合物.这些结果表明,LiFePO4/CNCs复合物具有优异的倍率性能和循环稳定性,是一种性能优良的锂离子电池正极材料,其性能源自CNCs载体的高比表面积、分级孔结构和优异导电性以及LiFePO4颗粒的纳米化和高结晶度.  相似文献   

7.
首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料. X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群. 红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质. 电化学测试结果表明,该材料在1 mol·L-1 NaClO4/PC电解液中,电流密度为14 mA·g-1、电压范围为1.5 ~4.2 V(vs. Na+/Na)测试条件下,其首次可逆放电比容量高达113 mAh·g-1.  相似文献   

8.
王蕾  赵冬冬  刘旭  于鹏  付宏刚 《化学学报》2017,75(2):231-236
针对目前的锂离子电池负极材料存在比容量低、循环稳定性差等问题,本工作发展了简单、有效的方法合成氧化亚钴纳米粒子与石墨烯的复合材料(CoO/RGO).采用氧化石墨(GO)和Co(NO32作为原料,先用水热路线制备了前驱体,再将其在氮气气氛下热处理,最终得到CoO/RGO复合材料.存在于石墨烯表面的CoO纳米粒子可以有效地阻止石墨烯片层的聚集,同时石墨烯片层的相互连接能够形成三维的空间网络,提高复合材料的导电性.将合成的CoO/RGO复合材料作为负极,以锂片作为正极,组装成纽扣电池.电化学测试表明,在电流密度为100 mA·g-1的条件下,初始比容量放电比容量高达1312.6 mAh·g-1,在10000 mA·g-1的大电流密度下,经过300圈循环后,其比容量仍然可以达到557.4 mAh·g-1.这表明CoO/RGO复合材料具有高的比容量、优异的倍率性能及循环稳定性,这归因于3D网状结构能够避免在锂离子的嵌入/脱出过程中材料的结构被严重破坏.  相似文献   

9.
引入电解液添加剂是提升钠离子二次电池电化学性能的重要途径.本论文制备了二氟草酸硼酸钠(NaDFOB)并作为NaClO4/碳酸乙烯酯(EC)/碳酸丙烯酯(PC)( EC:PC体积比=1:1)非水电解液的添加剂,分别考察了其加入量对于电导率特性、电化学氧化分解电压的影响,以及应用于NaNi0.5Mn0.5O2半电池的电化学性能. 结果表明,NaDFOB作为添加剂时对于NaClO4/EC/PC电解液电导率提升不明显,但是显著提升了电解液的氧化分解电压;以添加0.025 mol·L-1 NaDFOB的电解液应用于NaNi0.5Mn0.5O2半电池时,首周不可逆比容量由22 mAh·g-1下降到9 mAh·g-1,同时0.2C倍率下循环200周容量保持率由44.4% 提升到89.5%,平均每周容量衰减为0.06 mAh·g-1. 因此,NaDFOB可以作为钠离子电池非水电解液的一种有效添加剂.  相似文献   

10.
为考察不同锰源对所制备尖晶石LiMn2O4(LMO)电化学性能的影响(特别是高温性能),采用沉淀法制备前驱体,通过不同煅烧温度制备得到最常用的锰氧化物(MnO2、Mn2O3和Mn3O4)为锰源,经相同条件制备得到LMO正极材料,通过考察所得LMO形貌及电化学性能来研究锰源与LMO电化学性能的关系。研究结果表明,相同的前驱体在不同煅烧温度下可以得到不同的锰氧化物,且各自具有不同的形貌结构。由这些锰氧化物都可以得到高纯度的LMO,但产物形貌结构以及材料中的八面体晶体含量和尺寸不同。由Mn2O3制备得到的LMO材料中的八面体晶体含量最多,且尺寸最均匀,在3种LMO中容量性能、倍率性能和循环性能最好:0.2C(1C=148 mA·g-1)下首次放电比容量为131.8 mAh·g-1;3C下还有100.4 mAh·g-1的放电比容量。其...  相似文献   

11.
采用溶剂热法一步合成纳米尺寸CoFe2O4/GNS复合材料(直径约为15 nm),其颗粒尺寸均一,且均匀分散于石墨烯表面. 电化学测试结果表明,该复合物电极具有良好的循环和倍率性能,500 mA·g-1电流密度下100周期循环比容量稳定在709 mAh·g-1, 容量保持率高达95.8%;2 A·g-1电流密度,其比容量仍高达482 mAh·g-1.  相似文献   

12.
采用溶剂热法制备前驱体,后经350 °C热处理,首次合成了空心结构的NiMn2O4微球以及不同含量氧化石墨烯包覆的Ni/Mn3O4/NiMn2O4@RGO复合材料. 电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 mA·g-1电流密度下,100次循环后放电比容量保持在187.8 mAh·g-1,且800 mA·g-1电流密度下的可逆容量高达149.9 mAh·g-1,明显优于NiMn2O4及其他石墨烯基复合材料. 研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.  相似文献   

13.
谢勇  钟贵明  龚正良  杨勇 《电化学》2015,21(2):123-129
采用溶胶凝胶及高能球磨制得Li3Fe2(PO4)3/C材料,利用多种物理及其电化学技术观察材料形貌,表征材料结构及电化学性能,用电化学原位XAFS等初步研究Li3Fe2(PO4)3/C超理论容量电化学反应机理. 结果显示,Li3Fe2(PO4)3/C的结构为单斜晶系,空间群P21/n. 2.0 ~ 4.0 V电位区间,10 mAh·g-1电流密度,Li3Fe2(PO4)3/C电极的首周期放电比容量为129 mAh·g-1,达到其理论容量. 若电位区间拓宽至2.0 ~ 4.95 V,其首周期放电比容量高达165 mAh·g-1,超出理论的“额外”容量30%. 电化学原位XAFS测试未观察到明显的Fe3+/Fe4+氧化还原对参与电化学反应,初步推测“额外”容量可能来自于该复合材料的高浓度表面缺陷.  相似文献   

14.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

15.
当今社会,电化学储能器件在人类的社会活动中变得越来越重要。电极材料作为电化学储能器件的核心部分,一直是人们研究的焦点。石墨炔是一种新型的二维平面结构的全碳材料,它宽的层间距、大的比表面积、独特的三维孔隙结构和好的导电性使其在能源存储器件电极材料应用中具有巨大的潜力。基于石墨炔温和的制备方法与独特的结构特征,本文详细介绍了近年来石墨炔在储能方面的理论分析和实验进展。通过研究锂/钠在单层、多层石墨炔上的迁移率和存储,理论分析石墨炔基电池具有很好的储锂储钠性能。实验方面,石墨炔作为电极材料在储钠储锂方面的容量与理论值相近。此外石墨炔作为电极材料成功应用于超级电容器和金属-硫电池,并表现出了优异的容量存储性能。石墨炔纳米形貌的调控、石墨炔的热处理,以及异原子的掺杂等均可以有效地提高石墨炔在这些储能器件中的性能。  相似文献   

16.
本文首次提出利用酸浸蚀Si-Al(含Al 80%)合金粉末的方法制备多孔硅材料. 分析表明制得的多孔硅材料为晶体,并具有由纳米颗粒结集成的海绵状多孔结构,其粒径约20 μm,比表面102.7 m2·g-1. 多孔硅电极按多孔硅:导电碳:粘结剂 = 1:1:1(by mass)涂成. 在添加15%氟化碳酸乙烯酯(FEC)的1 mol·L-1 LiPF6/EC + DMC(1:1,by volume)电解液,在100 mA·g-1电流密度充放电,多孔硅电极的首次放电比容量2072 mAh·g-1 Si. 经237次充放电循环后,其放电容量仍可保持在1431 mAh·g-1 Si,显示了相当高的充放电稳定性. 这归因于其海绵状多孔结构有足够的微空间以承受充电过程中硅的急剧膨胀. 硅微粒的纳米尺寸有利于锂在Li-Si合金中的扩散. 纳米硅微粒可牢固地联成一整体,不易因膨胀、收缩而粉化断裂. 这种构筑多孔硅负极材料的新方法操作简便、成本低廉,有着很好的应用前景.  相似文献   

17.
Nb2O5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb2O5/C based electrode exhibits high rate performance and remarkable cycling ability, showing a high and stable specific capacity of ~380 mAh g-1 at the current density of 50 mA g-1(much higher than the theoretical capacity of Nb2O5).Further more,at a current density of 500 mA g-1,the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g-1 after 100 cycles.These results suggest the Nb2O5/C nanocomposite is a high performance anode material for lithium-ion batteries.  相似文献   

18.
以(NH4)2S2O8为氧化剂用化学氧化法合成了具有多层次结构的聚苯胺颗粒,其二次颗粒由一次颗粒集结而成,一次颗粒的粒径基本上在1 μm以下,一次颗粒由多层微小薄片叠合而成. 用这种聚苯胺为活性物质制成电极,以2 mol•L-1的H2SO4水溶液作电解液,组装成了聚苯胺电极超级电容器. 用循环伏安法、电化学阻抗谱和恒电流充放电技术测试了该超级电容器的电化学性能.在7 mA的充放电电流下,它的比能量可达6.35 Wh•kg-1,比功率可达132 W•kg-1,电极材料的比容量可达408 F•g-1. 在20 mA的充放电电流下,它的比能量可达4.39 Wh•kg-1,比功率可达328 W•kg-1,电极材料的比容量可达324 F•g-1. 在100次的充放电循环中,聚苯胺电极超级电容器的电容量没有下降,电荷充放电效率一直保持在95%左右.  相似文献   

19.
A facile and green freeze-drying-assisted method was proposed to synthesize C0MoO4 mesoporous nano-sheets(MPNSs).The resulting product exhibits a Mgh specific capacity and good rate perfomance when evalimte an anode material for lithium-ion batteries(LIBs).The reversible specific capacity can be kept at 1105.2 mA·h·g^-1 after 100 cycles at a current density of 0.2 A/g.Even at the current densities of 1 and 4 A/gs the CoMoO4 MPNSs electrode can still retain the reversible capacities of 1148.7 and 540 mA·h·g^-1,respectively.Furthermore,the full cell(LiPePO4 catliode/CoMoO4 MPNSs anode)displays a stable discharge capacity of 146.7 mA·h·g^-1 at 0.1 C(1 C=170 mA/g)together with an initial coulombic efficiency of 98.2%.In addition,the CoMoO4 crystal structure is destroyed and reduced into Co^0 and Mo^0 in the first discharge process.In the subsequent cycles,the attractive Li storage properties come from the reversible conversions between Co/Co^2+and Mo/Mo^6+.The improved electroche-mical performance of CoMoO4 MPNSs is mainly attributed to their unique porous structures,which not only possess a good ion diffusion and electronic conduction pathway,but also provide many cavities to alleviate the volume changes during repeated cycling.This work offers a new perspective to the design of other porous electrode materials with a good energy storage performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号