首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

2.
LetX andY be Banach spaces. TFAE (1)X andY do not contain subspaces uniformly isomorphic to (2) The local unconditional structure constant of the space of bounded operatorsL (X*k,Y k) tends to infinity for every increasing sequence and of finite-dimensional subspaces ofX andY respectively.  相似文献   

3.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

4.
Let be a sequence of independent Gaussian processes with (h) Put . The large increments forY(·) with bounded σ(p, h) are investigated. As an example the large increments of infinite-dimensional fractional Ornstein-Uhlenbeck process in IP are given. The method can also be applied to certain processes with stationary increments. Project supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.  相似文献   

5.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

6.
Let Si be a random walk with standard exponential increments. The sum ∑ i=1 k Si is called the k-step area of the walk. The random variable ∑ i=1 k Si plays an important role in the study of the so-called one-dimensional sticky particles model. We find the distribution of this variable and prove that
for 0 ≤ t ≤ 1. We also show that
, where the Ui,n are order statistics of n i.i.d. random variables uniformly distributed on [0, 1]. Bibliography: 6 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 341, 2007, pp. 48–67.  相似文献   

7.
We consider the randomly weighted sums $ \sum\nolimits_{k = 1}^n {{\theta_k}{X_k},n \geqslant 1} $ , where $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ are n real-valued random variables with subexponential distributions, and $ \left\{ {{\theta_k},1 \leqslant k \leqslant n} \right\} $ are other n random variables independent of $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ and satisfying $ a \leqslant \theta \leqslant b $ for some $ 0 < a \leqslant b < \infty $ and all $ 1 \leqslant k \leqslant n $ . For $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ satisfying some dependent structures, we prove that $$ {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant m \leqslant n} \sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant k \leqslant n} {\theta_k}{X_k} > x} \right)\sim \sum\limits_{k = 1}^m {{\text{P}}\left( {{\theta_k}{X_k} > x} \right)} $$ as x??????.  相似文献   

8.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

9.
A basis is constructed inc 0 such that there exists no bounded linear projection ofc 0 onto the subspace spanned by a certain subsequence of . This is part of the author’s Ph.D. thesis prepared at the Hebrew University of Jerusalem under the suppervision of Professor A. Dvoretzky and Dr. J. Lindenstrauss. The author wishes to thank Dr. Lindenstrauss for his helpful advice.  相似文献   

10.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

11.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

12.
Let (z ∈ ℝ). Further let λ denote a large real parameter. We show that for arbitrary real numbersk and α withk>=2.7013 and 0<α≦1,
  相似文献   

13.
We show that a Banach space valued random variableX such that t} \right\} = 0$$ " align="middle" border="0"> satisfies the central limit theorem if and only if the following criterion on small balls is fulfilled:
t} \right\} = 0$$ " align="middle" vspace="20%" border="0">  相似文献   

14.
Let(X i ) be a martingale difference sequence. LetY be a standard normal random variable. We investigate the rate of uniform convergence
  相似文献   

15.
Summary For the equation (⋆) below we give a condition which guarantees the existence of a bounded nonoscillatory solution x with Entrata in Redazione il 19 luglio 1977.  相似文献   

16.
В РАБОтЕ ДАЕтсь ОтВЕт НА ОДИН ВОпРОс, пОстАВ лЕННыИ В. г. кРОтОВыМ. УстАНОВлЕН О, ЧтО ЕслИ Ф(х) — МОНОтОННО ВО жРАстАУЩАь ФУНкцИь,Ф (0)=0, Ф(2х)≦кФ(х), х[0, ∞), тО $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {S_k - f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\mu _k } \Phi (\lambda _k ) = \infty $$ Дль пРОИжВОльНых НЕО тРИцАтЕльНых ЧИслОВ ых пОслЕДОВАтЕльНОстЕ И {Μk} И {λk}. (жДЕсьS k ОБОжНАЧАЕт ЧАстНУУ с УММУ пОРьДкАk РьДА ФУ РьЕ ФУНкцИИf). УстАНОВлЕН О тАкжЕ, ЧтО ВО МНОгИх слУЧАьх $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {\tilde S_k - \tilde f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\frac{1}{{k\lambda _k }}} \Phi ^{ - 1} \left( {\frac{1}{{k\mu _k }}} \right)< \infty .$$   相似文献   

17.
A limit theorem is proved for , whereP is the Perron-Frobenius operator associated with transformations on the unit interval with indifferent fixed points.  相似文献   

18.
Quasi-normed Lorentz spaces Λψ, q of 2π-periodic functions with quasinorms $$\left\| f \right\|_{\psi ,q} = \left\{ {\int\limits_0^{2\pi } {\psi ^q (t)\left[ {\frac{1}{t}\int\limits_0^t {f * (x)} dx} \right]} ^q \frac{{dt}}{t}} \right\}^{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}} $$ (0<q<∞,ω(t): [0,2π]→R is a continuous concave function with finite derivative everywhere on (0, 2gp)) and classes of functions $$H_{\psi ,q}^\omega \equiv \{ f(x):f(x) \in \Lambda _{\psi ,q} ;\mathop {\sup }\limits_{0 \leqq h \leqq \delta } \left\| {f(x + h) - f(x)} \right\|_{\psi ,q} = O\{ \omega (\delta )\} , \delta \to + 0\} $$ (ω(δ) — modulus of continuity) are studied. Precise embedding conditions of classes H ψ, q ω into Lorentz spaces and into each other are obtained: $$\begin{array}{*{20}c} {H_{\psi ,q_1 }^\omega \subset \Lambda _{\psi ,q_2 } ;} & {H_{\psi ,q_1 }^\omega \subset {\rm H}_{\psi ,q_2 }^{\omega * } ,} & {0< q_2< q_1< \infty ,} \\ \end{array} $$ under conditions \(\mathop {\lim }\limits_{t \to \infty } \frac{{\psi (2t)}}{{\psi (t)}} > 1,\mathop {\overline {\lim } }\limits_{x \to \infty } \frac{{\psi (2t)}}{{\psi (t)}}< 2\) andω(δ)=O{ω(δ 2)},δ→+0, andω * (δ) is an arbitrary modulus of continuity.  相似文献   

19.
A mapT: X→X on a normed linear space is callednonexpansive if ‖Tx-Ty‖≤‖x-y‖∀x, yX. Let (Ω, Σ,P) be a probability space, an increasing chain of σ-fields spanning Σ,X a Banach space, andT: X→X. A sequence (xn) of strongly -measurable and stronglyP-integrable functions on Ω taking on values inX is called aT-martingale if . LetT: H→H be a nonexpansive mapping on a Hilbert spaceH and let (xn) be aT-martingale taking on values inH. If then x n /n converges a.e. LetT: X→X be a nonexpansive mapping on ap-uniformly smooth Banach spaceX, 1<p≤2, and let (xn) be aT-martingale (taking on values inX). If then there exists a continuous linear functionalf∈X * of norm 1 such that If, in addition, the spaceX is strictly convex, x n /n converges weakly; and if the norm ofX * is Fréchet differentiable (away from zero), x n /n converges strongly. This work was supported by National Science Foundation Grant MCS-82-02093  相似文献   

20.
We characterize the class of distribution functions Φ(x), which are limits in the following sense: there exist a sequence of independent and equally distributed random variables {ξ n }, numerical sequences {a k }, {b k } and natural numbers {n k } such that $$\mathop {lim}\limits_{k \to \infty } Prob\left\{ {\frac{1}{{a_k }}\mathop {\Sigma }\limits_{k = 1}^{n_k } \xi _k - b_k< x} \right\} = \Phi (x)$$ and $$\mathop {\lim \inf }\limits_{k \to \infty } (n_k /n_{k + 1} ) > 0$$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23