首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
计算部分熔融岩石电导率方法的综述   总被引:1,自引:3,他引:1       下载免费PDF全文
部分熔融岩石的电导率是由固体岩石的低电导率和硅酸盐熔体的高电导率组成,因此熔体的几何形态和空间分布对部分熔融岩石的电导率将产生重大影响.本文介绍了熔体在岩石中的分布特征和它们的几何分布形态,同时,评述了各种数学模型在模拟计算部分熔融岩石电导率中的优缺点.  相似文献   

2.
In this paper, the methods of digital rock physics are applied to determine pressure-dependent effective thermal conductivity in rock samples. Simulations are performed with an in-house three-dimensional finite volume code. In the first step, four numerical models are derived from a given tomographic scan of Berea sandstone. Consequently, simulations of the thermal conductivity at ambient conditions are performed and validated with experimental data. In a second step, a new workflow for the determination of the pressure-dependent thermal conductivity in rock samples is elaborated, tested and calibrated. Results originating from the derived workflow show very good agreement with experimental data.  相似文献   

3.
Measurement of complex electrical conductivity as a function of frequency is an extremely sensitive probe for changes in pore and crack volume, crack connectivity, and crack surface topography. Such measurements have been made as a function of pore fluid chemistry, hydrostatic confining pressure, as well as uniaxial and triaxial deformation. This paper will; (1) describe the effects of triaxial deformation on the complex electrical conductivity of saturated porous rocks, (2) use the electrical data to model the mechanical stress-strain behaviour, and (3) compare the modelled behaviour with the stress-strain behaviour measured during the deformation. Experimental conductivity data tracks how the rock undergoes compaction with progressive loss of crack volume, followed by dilatation due to new crack formation, growth of existing cracks, crack interlinkage, and finally failure, as axial strain is increased. We have used the complex electrical data to produce a direction-sensitive (anisotropic) crack damage parameter, and used it to calculate the effective Young's modulus by employing the models of Walsh and Bruner. Comparison of the synthetic stress-strain curves so produced, with the experimentally derived stress-strain curves shows good agreement, particularly for undrained tests. This modelling is an improvement on similar curves produced using isotropic crack damage parameters derived from acoustic emission data. The improvement is likely to be due to the directional sensitivity of the electrical conductivity measurement, and its ability to discriminate between the formation of isolated cracks, and those cracks that contribute to the inter-connected crack space i.e. those cracks upon which transport properties of the rock such as electrical conductivity, and mechanical properties depend most critically during triaxial deformation.  相似文献   

4.
电导率是表征岩石电学性质的重要物理参数,在地质资源勘查和测井解释等领域发挥着巨大作用.快速、准确地确定岩石电导率具有重要的理论和实践意义.作为近年来发展的一种岩石物理数值模拟工具,数字岩心技术在定量计算电导率等物性参数方面应用广泛.三维微观结构的准确获取是数字岩心技术计算岩石电导率的关键,但传统获取岩石三维微观结构的方...  相似文献   

5.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
本文采用有限元方法研究含湿孔隙岩石的有效热导率,即随机划分网格并指定材料性质,建立三维含湿孔隙岩石的有限元模型,模型的上下表面施加不同的温度,侧面绝热,计算出总热流,然后结合上下表面的温度梯度计算出岩石的有效热导率.考虑到单个随机模型不一定具有代表性,对给定的孔隙率和饱和度均生成了200种矿物、水、空气随机分布的岩石模型,进行Monte Carlo实验和统计分析,统计分析结果与前人实验结果吻合良好.数值分析结果表明,孔隙岩石的有效热导率与岩石的孔隙率、饱和度、固体矿物组分及孔隙的分布情况有关,数值计算的误差随着网格数目的增加而减小.此有限元方法可以用来估算岩石的有效热导率,在已知组分性质的多矿物岩石物性计算方面有广阔应用前景.  相似文献   

7.
不同太阳活动及地磁条件下的电导率分布变化   总被引:4,自引:3,他引:1       下载免费PDF全文
电离层电导率在不同的太阳活动和地磁条件下会发生变化. 本文通过中性大气经验模式NRLMSISE_00(Neutral Atmosphere Empirical Model_2000,简称NRLMSISE_00)和电离层经验模式IRI_2001(International Reference Ionosphere_2001,简称IRI_2001)计算电离层的电子、离子碰撞频率以及电导率,并简要讨论了120 km和300 km高度上的电导率在不同季节、不同太阳活动和地磁指数下的经纬分布. 结果显示,电导率的分布与日照密切相关,且随太阳活动的变化而变化. 磁暴时电导率随地磁活动的变化相对于随太阳活动的变化要小,在120?km高度,磁暴期间电导率在低纬地区和高纬地区发生不同变化,且Pedersen电导率和Hall电导率变化趋势相反,向两极靠近,电导率变化幅度略有增长;在300?km高度上,磁暴对低纬地区和高纬地区电导率的影响要比120?km处大,Pedersen电导率和Hall电导率变化趋势相同,且越向两极靠近电导率的变化幅度越大.  相似文献   

8.
高温高压下地幔矿物岩石电导率影响因素研究进展   总被引:1,自引:0,他引:1  
实验室高温高压条件下获得的地幔矿物岩石电导率值可以帮助获得地球内部物质组成、物质运动变化状态和解释地球物理探测资料.研究表明,电导率测量影响因素(外部因素和内部因素)控制不当将使得测量的电导率值产生较大差异.本文综述了近20年来这些影响因素对地幔矿物岩石电导率的影响程度及进展情况,电导率随着温度,铁含量和水含量的增加而增加;不含水条件下,电导率随着氧逸度和压力的增加分别增加和减小,含水条件下则恰恰相反;忽略颗粒边界的影响;测量频率和结晶方向对电导率的影响尚存在一定争议;进行电导率测量时有必要考虑系统平衡时间和样品中铁含量的流失.最后探讨了高温高压条件下电导率实验研究的不足和发展方向.  相似文献   

9.
Profiles of electrical conductivity in the troposphere and stratosphere were measured by balloon-borne conductivity sondes at Garmisch-Partenkirchen, West Germany, from January to May, 1980, when volcanic activity was low. The aerosol concentration has been deduced from the relative decrease of conductivity from surrounding values by assuming the effective attachment coefficient of ions to aerosols. A prominent decrease of the conductivity near the tropopause is usually observed indicating high concentrations of Aitken particles (500–1000 cm–3). A decrease of conductivity, well above the tropopause, is sometimes observed, probably due to the transport of tropospheric Aitken particles with high concentration (200–400 cm–3) into the stratosphere.  相似文献   

10.
The conductivity of four igneous rocks with, 49, 65, 77, and 84% SiO2 was measured as a function of temperature in the interval from 20° to 1280°C; measurements were made in a vacuum of 10?3 torr. No simple relationships were found between conductivity and SiO2 content or versus major element groupings such as Na2O=K2O=CaO and TiO2=Cr2O3=Al2O3=Fe2O3=FeO. An analytical expression was obtained between conductivity and the albite-quartz ratio, valid for temperatures between 300° and 1200°C. It was necessary to compute the CIPW norm in order to obtain the albite and quartz percentages. The onset of melting apparently occurred between 600° and 700°C. Petrography performed on two samples after cooling showed 70 and 85% partial melting. Three conduction regions were identified: 1) below 300°C, 2) between 300°C and 600°C, and 3) above 600°C. Different activation energies obtained for the heating and cooling intervals confirm that the sample undergoes textural changes in the heating-cooling cycle. Activation energy increments of 0.1 and 0.2 eV per decade of albite-quartz ratio were obtained.  相似文献   

11.
Compressibility of porous rocks: Part II. New relationships   总被引:1,自引:0,他引:1  
Pore volume compressibility is one of the physical properties of a reservoir that must be specified in many reservoir-engineering calculations. The main objective of this work is to provide new general formulas for pore volume compressibility versus porosity on the basis of measured compressibilities of some limestone and sandstone rocks in a wide range of porosity values and of varied type; the measurements were performed on Hungarian reservoir rock samples. The obtained laboratory results were compared with the published correlations of consolidated limestone samples as well with values for friable and strongly consolidated sandstones. The validity of using compressibility data from the literature was investigated. The measured data showed poor agreement with the published correlations. The first approach to find better and more accurate rock compressibility correlations consisted of combing all the data available from the literature, using the same formula of Horne’s type. However, this attempt did not give satisfying fitting results. In the next step, by using twelve different fitting formulas, and other comprehensive nonlinear fitting regression programs, new rock compressibility correlations for limestone and sandstone rocks, with better goodness of fit, were developed. These new correlations can be generalized and used for most of oil and gas reservoirs.  相似文献   

12.
J. Holden  T. P. Burt 《水文研究》2003,17(6):1227-1237
A key parameter used in wetland hydrological and landform development models is hydraulic conductivity. Head recovery tests are often used to measure hydraulic conductivity, but the calculation techniques are usually confined to rigid soil theory. This is despite reports demonstrating the misapplication of rigid soil theory to non‐rigid soils such as peats. Although values of hydraulic conductivity calculated using compressible techniques have been presented for fenland peats, these data have never, to the authors' knowledge, been compared with such calculations in other peat types. Head recovery tests (slug withdrawal) were performed on piezometers at depths ranging from 10 to 80 cm from the surface on north Pennines blanket peats. Results were obtained using both rigid and compressible soil theories, thus allowing comparison of the two techniques. Compressible soil theory gives values for hydraulic conductivity that are typically a factor of five times less than rigid soil calculations. Hydraulic conductivity is often assumed to decrease with depth in upland peats, but at the study site in the northern Pennines it was not found to vary significantly with depth within the range of peat depths sampled. The variance within depth categories was not significantly different to the variance between depth categories showing that individual peat layers did not have characteristic hydraulic conductivity values. Thus, large lateral and vertical differences in hydraulic conductivity over short distances create problems for modelling but may help account for the high frequency of preferential flow pathways within what is otherwise a low matrix hydraulic conductivity peat. Hydraulic conductivity was found to vary significantly between sampling sites, demonstrating that hillslope‐ or catchment‐scale variability may be more important than plot‐scale variability. Values for compressibility of the peats are also reported. These generally decline with depth, and they also vary significantly between sampling sites. There are implications for the way in which measurements of hydraulic conductivity and other properties of blanket peat are interpreted, as the effects of environmental change in one part of a peat catchment may be very different to those in another. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Stateofin-situstressindifferentrocks(朱焕春,陶振宇)Huan-Chun;ZHUandZhen-YuTAO(WuhanUniversityofHydraulicandElectricEngineering,Wuha...  相似文献   

14.
Two‐component hydrograph separation was performed on 19 low‐to‐moderate intensity rainfall events in a 4·1‐km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12–46 µS/cm) and pre‐event streamwater EC values (520–1297 µS/cm). While new water accounted for most of the increased discharge during storms (61–117%), the contribution of new water to total discharge during events was typically lower (18–78%) and negatively correlated with antecedent stream discharge (r2 = 0·55, p < 0·01). The amount of new water was positively correlated with total rainfall (r2 = 0·77), but hydrograph separation results suggest that less than half (9–46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non‐conservative tracers (EC and Si) and a conservative isotopic tracer (δD) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer‐based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non‐point‐source pollutant loading to urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An apparatus has been developed for investigation of hydraulic conductivity of frozen soils. The test procedure is isothermal and involves the passage of water from one reservoir into the frozen sample and out of the frozen sample into a second reservoir. The water in the reservoirs remains unfrozen because it contains dissolved lactose. The concentration of lactose is such that, initially, the water in the reservoirs is in thermodynamic equilibrium with the water in the soil. On application of pressure to one reservoir a known hydraulic gradient is established and flow takes place. Flow is shown to vary linearly with hydraulic gradient. The hydraulic conductivity coefficient depends on soil type and temperature and is related to the unfrozen water content. At temperatures within a few tenths of 0°C the coefficient apparently ranges from 10?5 to 10?9 cm sec?1, and decreases only slowly below about ?0·5°C. Soils known to be susceptible to frost heave are shown to have significant hydraulic conductivities well below 0°C.  相似文献   

16.
A laboratory installation has been developed together with a technique for determining thermo-physical properties (thermal conductivity and specific heat) in cylindrical rock specimens. The technique is based on iTOUGH2-EOS3 inversion modeling using temperature measurements inside specimens as a result of their short-term heating and subsequent return to the initial temperature. We estimated the thermal conductivity and specific heat for a collection of volcanogenic petrotypes that reflect the rocks that compose the Rogozhnikovskii volcanogenic oil reservoir (29 specimens). The average thermal conductivity of the dry rocks is 1.47 W/m °C and the average specific heat is 754 kJ/kg °C; the reproducibility of this estimation is 2.2% for thermal conductivity and 0.7% for specific heat.  相似文献   

17.
An accurate prediction of the thermal conductivity of reservoir rocks in the subsurface is extremely important for a quantitative analysis of basin thermal history and hydrocarbon maturation. A model for calculating the thermal conductivity of reservoir rocks as a function of mineral composition, porosity, fluid type, and temperature has been developed based on fabric theory and experimental data. The study indicates that thermal conductivities of reservoir rocks are dependent on the volume fraction of components (minerals, porosity, and fluids), the temperature, and the fraction of series elements (FSE) which represents the way that the mineral components aggregate. The sensitivity test of the fabric model shows that quartz is the most sensitive mineral for the thermal conductivity of clastic rocks. The study results indicate that the FSE value is very critical. Different lithologies have different optimum FSE values because of different textures and sedimentary structures. The optimum FSE values are defined as those which result in the least error in the model computation of the thermal conductivity of the rocks. These values are 0.444 for water-saturated clay rocks, 0.498 for water-saturated sandstones, and 0.337 for water-saturated carbonates. Compared with the geometric mean model, the fabric model yields better results for the thermal conductivity, largely because the model parameters can be adjusted to satisfy different lithologies and to minimize the mean errors. The fabric model provides a good approach for estimating paleothermal conductivity in complex rock systems based on the mineral composition and pore fluid saturation of the rocks.  相似文献   

18.
Summary The values of the electrical conductivity, recorded during the heating and cooling cycle, of eclogites and basalts are compared. The observed difference in the values is explained by reversible and irreversible changes which take place in the samples.  相似文献   

19.
Pore volume compressibility is one of the physical properties of a reservoir that must be specified in many reservoir-engineering calculations. In the presented research, the effect of compact pressure, temperature and porosity on compressibility was investigated. A total of twenty-two different cores were tested: five limestone, one friable sandstone, fourteen medium to hard sandstone, and two very dense sandstone. Core samples were placed in the test cell and subject to compacting pressure up to 10,000 psi. Runs were made at room temperature and at 52°C for limestone samples. Although there were some publications concerning measurement and study of the effect of pressure and temperature on pore volume compressibility of reservoir rocks, nothing has been published about compressibility of Hungarian reservoir rocks, except of the work of Tóth and Bauer (1988). The present study showed pore volume compressibility data for different Hungarian fields. The result of the study at high temperature (52°C) shows that pore compressibility increases with increasing temperature.  相似文献   

20.
Microscopic mechanisms for heat transport in dense minerals (phonon scattering and photon attenuation) exhibit aspects of threshold behavior, discussed qualitatively here. For all minerals examined so-far using laser-flash analysis, the lattice component of the thermal conductivity of the mantle asymptotes to a constant above a critical temperature of 1500 K. Radiative transfer calculated from absorption spectra has thresholds in both grain-size and Fe content, and a rather complex dependence on temperature. These critical phenomena impact convection of the lower mantle, because the lattice contribution tends to destabilize the cold boundary layers, whereas radiative transfer mostly promotes stability in the lower mantle, unless the grains are large and Fe-rich, which makes convection chaotic and time-dependent. The specific behavior suggests that flow in the lower mantle is sluggish, whereas flow in the upper mantle-transition zone is time-dependent. The decrease in krad as Fe/(Fe + Mg) increases beyond 0.1 may be connected with formation of lower mantle, thermo-chemical plumes through positive feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号