首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
通过对T800复合材料层合板进行一系列的端部压溃试验,重点研究了长度、厚度、铺层顺序、触发角以及胶结压力等因素对复合材料层合板破坏模式和力学性能的影响。分析复合材料板在端部压溃过程中的载荷-位移曲线和观察试验样件端部破坏形貌,揭示其破坏机理。结果表明:复合材料平板的端部压溃过程为非稳态脆性断裂模式,而含45°触发角的复合材料层合板的端部压溃过程为层束弯曲破坏模式;在端部压溃试验中复合材料平板压缩强度随着厚度的增加逐渐上升,而长度的增加会减少其压缩强度,同时[45°/0°/-45°/0°]_(3s)铺层比[45°/90°/-45°/0°]_(3s)铺层拥有更好的抗轴向承载能力;触发角的加入会改变试件在压溃过程中的破坏模式并极大降低试件压溃时的压缩强度,是影响复合材料结构吸能能力的关键因素;研究还发现不同胶结压力下,复合材料层板的力学性能随着胶结压力的增加逐渐提高,但达到一定胶结压力值后,继续增加胶结压力力学性能反而下降。  相似文献   

2.
准三维炭/炭复合材料力学性能分析   总被引:1,自引:0,他引:1  
以针刺网胎无纬布交替叠层准三维结构为预制体,采用热梯度化学气相沉积(TCVI)和树脂压力浸渍-炭化(PIC)混合致密方法得到不同密度的炭/炭复合材料,研究了密度和热处理温度对炭/炭复合材料弯曲和压缩性能的影响,并对其机理进行了探讨。结果表明:增大材料的密度可以提高材料的弯曲和压缩性能,破坏机理发生改变,密度较低时,弯曲破坏方式为“假塑性”的分层破坏模式,压缩破坏为压溃式破坏;高密度的试样,弯曲破坏为拉应力或压应力破坏模式,压缩破坏为剪切和分层破坏模式,表现出一定的脆性;热处理温度升高,降低了材料的弯曲和压缩强度或模量,但明显改变了材料的破坏模式,增多了裂纹扩展或偏转的途径,表现出更好的“假塑性”;由分析得出,准三维炭/炭复合材料承压时,针刺处是力学薄弱点,易产生分层。  相似文献   

3.
为探究静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度,以湿法缠绕工艺制备中厚玻璃纤维增强树脂基复合材料(GFRP)圆柱耐压壳结构模型,对其初挠度进行测试,并开展静水压破坏试验,分析了结构的极限承载能力、应变响应和破坏模式。基于实测初挠度及破坏模式,建立含缺陷复合材料圆柱壳的非线性分析有限元模型,同时考虑壳体几何缺陷及承压过程中的复合材料面内损伤,编制ABAQUS接口子程序USDFLD,对模型的损伤过程进行数值模拟,获得静水压下含缺陷中厚复合材料圆柱壳的渐进失效过程,并与试验结果对比验证。研究表明:在静水压下中厚GFRP圆柱壳结构在破坏前载荷几乎呈线性增加,最终破坏模式为材料的压缩破坏,整体屈曲破坏模式不明显。考虑结构的几何缺陷和材料损伤演化后,采用非线性有限元模拟得到的壳体极限强度与试验结果吻合良好,可以作为预测含缺陷中厚复合材料圆柱壳极限强度的方法。采用该方法对影响中厚复合材料圆柱耐压壳极限强度的关键参数进行了研究,为深海复合材料耐压壳的研究设计提供参考。  相似文献   

4.
周昊  郭锐  刘荣忠  刘涛 《复合材料学报》2019,36(5):1226-1234
基于ABAQUS有限元仿真软件,建立了不同夹芯相对密度的碳纤维增强聚合物(Carbon Fiber Reinforced Polymer,CFRP)复合材料方形蜂窝夹层结构在水中爆炸冲击波载荷作用下的仿真模型,分析了结构的变形过程、夹芯的压缩特性及结构的失效及破坏情况。数值模拟结果表明,CFRP复合材料蜂窝夹芯压缩量在前面板速度降至与后面板相同时达到最大; CFRP复合材料蜂窝夹芯的最大压缩量随着初始压力的增大呈先缓慢增大后快速增大的趋势,其增大趋势在夹芯接近完全压缩时又趋于缓慢; CFRP复合材料夹层结构失效随夹芯相对密度和初始压力的变化呈现不同的模式,且其防护性能优于等重的层合结构。研究结果可以为复合材料夹层结构在水中冲击波载荷防护中的应用提供参考。   相似文献   

5.
为有效预测蜂窝夹层复合材料结构压缩失稳载荷和破坏模式,本文基于层压板宏细观多尺度数值分析模型,研究蜂窝夹层复合材料结构在轴向压缩载荷下的屈曲稳定性。基于改进的通用单胞理论模型,并结合ABAQUS用户自定义子程序接口,建立蜂窝夹层复合材料结构宏细观数值模型,预报蜂窝夹层复合材料结构失效载荷和破坏模式,并与试验结果对照,验证了模型的有效性。结果表明:通过本文建立的数值模型可以有效预测蜂窝夹层复合材料结构在压缩载荷下的失稳载荷和破坏模式,其一阶失稳载荷为128.12 kN,与试验结果误差为4.58%,蜂窝夹层复合材料结构破坏模式为先发生屈曲失稳,然后迅速破坏。   相似文献   

6.
钻孔分层损伤对复合材料层合孔板的承载能力和失效模式有着显著的影响。通过实验和仿真相结合的方式,开展单一预制分层缺陷下、双分层缺陷同侧耦合及双分层缺陷异侧耦合作用下复合材料层合孔板的压缩承载能力及失效模式的研究。通过预埋聚四氟乙烯薄膜,制备了含单一圆形预制分层缺陷的碳纤维增强树脂复合材料开孔板试件,采用浸没式超声C扫和数字图像DIC技术分别对复合材料层合板损伤和法向变形进行检测,研究含不同尺寸预制分层开孔层合板在压缩载荷下的分层扩展及失效变形特征,进而揭示分层缺陷大小对其承载能力的影响机制。构建基于内聚力单元方法的含孔复合材料层合板数值模型,对比实验修正模型,探索了单一预制分层缺陷下碳纤维增强树脂复合材料开孔板的损伤扩展机制,并在此模型基础上开展双分层缺陷耦合作用下复合材料开孔板在压缩载荷作用下的屈曲变形、分层扩展和承载能力的数值预测和分析。实验结果表明:含单一圆形预制分层缺陷的碳纤维增强环氧树脂复合材料开孔层合板试件呈现出初始受压、局部屈曲、整体屈曲后破坏的失效模式,预制分层缺陷对复合材料孔板压缩力学性能有显著影响,随着缺陷的增大压缩承载能力逐渐下降。双分层缺陷耦合作用数值分析表明:双...  相似文献   

7.
对树脂传递模塑(RTM)成型的复合材料T型接头进行了工艺参数优化、制备及力学性能实验研究。应用流动模拟软件,对RTM成型的复合材料T型接头进行了基体流动数值模拟,确定模具最佳注射方式和出胶口位置,并优化了影响树脂充模时间的工艺参数,显著提高了RTM接头的工艺性能。根据优化工艺参数结果,制备了RTM成型的复合材料T型接头试样,并进行了拉伸和压缩试验,分析了其破坏机制。根据拉伸和压缩试验现象和结果,发现RTM成型的复合材料T型接头拉伸破坏模式主要为富树脂三角区的树脂与纤维布界面分层,其拉伸破坏主要取决于树脂基体抗剥离分层的拉伸强度;压缩破坏模式为底板中央部位的弯曲分层与折断,其压缩破坏由接头底板中的纤维布抗拉强度决定;T型接头的压缩破坏强度高于拉伸破坏强度。  相似文献   

8.
以高强高模聚酰亚胺(PI)纤维为增强体,以航空级环氧树脂(EP)为基体,通过热熔法制备预浸料并采用热压罐成型技术制备了PI/EP复合材料层合板,对其力学性能和破坏形貌进行了分析。结果表明:高强高模PI纤维与EP具有良好的界面结合力,PI/EP复合材料的层间剪切强度为65.2 MPa,面内剪切强度为68.6 MPa;良好的界面结合状态能充分发挥PI纤维优异的力学性能,PI/EP复合材料的纵向拉伸强度达1 835 MPa,弯曲强度为834 MPa;PI/EP复合材料纵向拉伸破坏模式为散丝爆炸破坏,同时由于高强高模PI纤维还具有优异的韧性和较高的断裂伸长率,PI/EP复合材料从受力到失效断裂的时间较长;PI/EP复合材料纵向压缩破坏模式为45°折曲带破坏。高强高模PI/EP复合材料为航空航天先进复合材料增加了一个全新的选材方案。   相似文献   

9.
对含面板/夹芯界面中央分层缺陷复合材料蜂窝夹层板的压缩性能进行了试验研究和理论分析,考察了一种圆形分层和2种矩形分层缺陷对其压缩强度的影响,并采用子层局部屈曲模型对压缩强度进行了计算。结果表明:无缺陷夹层板表现为总体失稳破坏,而对于含分层缺陷的夹层板,则视分层形状及其大小的不同而表现出不同的破坏机制。对于矩形缺陷的长边与载荷方向垂直的夹层板,一般情况下面板子层局部屈曲对夹层板的最终破坏不起控制作用;对于矩形缺陷的长边与载荷方向平行的夹层板,表现为总体失稳破坏。压缩破坏过程中,面板子层屈曲起控制作用的夹层板,子层局部屈曲模型能够比较精确地预测其压缩强度。  相似文献   

10.
三维C/C复合材料的压缩性能及破坏机制   总被引:1,自引:0,他引:1       下载免费PDF全文
采用扫描电镜、激光共聚焦显微镜观察和力学性能测定的方法,研究了三维C/C复合材料微观结构形貌,以及材料x向、y向和z 向的压缩性能。结果表明,材料内部缺陷明显,纤维束/基体界面结合较弱,材料z向压缩强度和破坏应变均大于x向和y向,压缩应力-应变曲线开始阶段近似线性,随着载荷的增加,曲线表现出明显的非线性特征。从宏观上考察了材料的压缩破坏机制,材料x向、y向和z向破坏模式均为剪切型破坏,纤维/基体界面结合强度对破坏模式影响明显。  相似文献   

11.
The initial misalignment of Kevlar fibres in Kevlar-epoxy composites is quantitatively investigated. This misalignment has been found to be one of the most important factors for determining the compressive response of these composites. A theoretical model, which considers initial fibre misalignment and assumes that the compressive response of Kevlar-epoxy composites is dominated by kink band failure, is in good agreement with experimental results. In addition, photomicrographs of the failure surfaces suggest that kink band formation is the predominant failure mode in this composite system.  相似文献   

12.
A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material's ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers.  相似文献   

13.
The compressive response of polymer matrix fiber reinforced unidirectional composites (PMC's) is investigated via a combination of experiment and analysis. The study accounts for the nonlinear constitutive response of the polymer matrix material and examines the effect of fiber geometric imperfections, fiber mechanical properties and fiber volume fraction on the measured compressive strength and compressive failure mechanism.Glass and carbon fiber reinforced unidirectional composite specimens are manufactured in-house with fiber volume fractions ranging over 1060 percent. Compression test results with these specimens show that carbon fiber composites have lower compressive strengths than glass fiber composites. Glass fiber composites demonstrate a splitting failure mode for a range of low fiber volume fractions and a simultaneous splitting/kink banding failure mode for high fiber volume fractions. Carbon fiber composites show kink banding throughout the range of fiber volume fractions examined. Nonlinear material properties of the matrix, orthotropic material properties of the carbon fiber, initial geometric fiber imperfections and nonuniform fiber volume fraction are all included in an appropriate finite element analysis to explain some of the observed experimental results. A new analytical model predictionof the splitting failure mode shows that this failure mode is favorable for glass fiber composites, which is in agreement with test results. Furthermore, this modelis able to show the influence of fiber mechanical properties, fiber volume fraction and fiber geometry on the splitting failure mode.  相似文献   

14.
基于高强、高韧、高模和压拉平衡为特征的第三代先进复合材料的需求,综述了连续纤维增强树脂复合材料纵向压缩强度预测模型的发展历程。基于纤维微屈曲、纤维扭结带、联合预测模型及渐进损伤失效模型,分别讨论了连续纤维增强树脂复合材料压缩失效机制,并在联合预测模型基础上,探究了碳纤维(直径、模量、体积分数、初始偏角)、树脂基体(弹性模量、剪切模量)及纤维/树脂界面三要素对连续纤维增强树脂复合材料纵向压缩强度和压缩失效形式的影响。   相似文献   

15.
The shear mode of compressive failure in unidirectional fibre composites is discussed. A mechanism is described in which the shear deformation is restricted to a band of material inclined to the plane normal to the fibre axes. The relationship between the orientation of the failed band of material and the limiting shear deformation in the band is explained in terms of volumetric strains. Tests are described which demonstrate that, in GRP, this type of failure can propagate from a notch and this notch sensitivity is put forward as an explanation for the apparent inadequacy of the theoretical model. The sequence of events in the propagation of compressive failure is studied by examining serial sections of an arrested failure. It is found that fibre fracture at the boundaries and interlaminar failure within the band follow as a result of increasing shear deformation in the band.  相似文献   

16.
Failure mechanisms were studied in a unidirectional carbon/epoxy composite under uniform and linearly varying longitudinal compression. The first failure mechanism is shear yielding or shear failure in the matrix precipitated by initial fiber misalignment. It was shown how an initial fiber misalignment of 1.5° can produce the measured compressive strength of 1725 MPa (250 ksi). Matrix failure is followed by fiber buckling and fracture, resulting in the formation of a kink band. The kink band orientation is constant in the range of β = 20–30°, whereas the kink angle a varies from a small initial value to a maximum value of 2β. Kink band widths varied between 4 and 20 fiber diameters. Kink bands can occur on different planes which can rotate along the band. Kink band multiplication or broadening with increasing stress was observed at points where the maximum kink angle was reached.  相似文献   

17.
基于热压罐成型工艺, 选择了树脂柱Z向增强泡沫芯材、碳纤维Z向增强泡沫芯材、Kevlar纤维缝纫增强泡沫芯材3种Z向增强复合材料结构, 对夹芯结构进行了低速冲击损伤和冲击后压缩(CAI)性能研究, 考察了不同Z向增强方式对冲击损伤面积和破坏模式的影响。结果表明, Z向增强对泡沫芯材产生了初始损伤, 其冲击后损伤面积大于未增强泡沫夹芯结构; 但Z向增强改变了夹芯结构的压缩破坏机制。通过选用合适的Z向增强材料和Z向增强参数, 能够提高夹芯结构的压缩强度和CAI强度。其中当增强材料为碳纤维, 增强参数为10 mm×10 mm时, 压缩强度提高了13%, CAI强度提高超过40%。  相似文献   

18.
Recent experimental studies of compressive failure in fibre-reinforced polymeric composites have been analysed. It is shown that the parametric basis for most compressive strength models, i.e. pure plastic buckling controlled by matrix shear strength and initial fibre misorientation, is probably incomplete. It is argued that, instead, failure is triggered by the initiation of an unstable kink band prior to buckling instability, and that additional parameters (interfacial shear stress/strain; fibre strength) are responsible for this transition in mechanisms.  相似文献   

19.
The effect of laminate thickness was investigated on the compressive behavior of unidirectional and crossply composites. A recently developed compression test method for thick composites was used to test specimens from 16 to 200-plies thick. In all cases the stress-strain behavior to failure is nonlinear and failure strength is matrix dominated. Longitudinal compressive failure is triggered by matrix failure accompanied by fiber microbuckling and the compressive strength is greatly degraded by initial fiber misalignment. The longitudinal compressive strength shows a mild trend of decreasing values with increasing thickness. It can be explained that, even if such a trend is significant, increasing size would have a diminishing effect on compressive strength for initial fiber misalignments greater than 1.5 to 2°. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Results from an experimental investigation on the mechanical behavior of unidirectional fiber reinforced polymer composites (E-glass/vinylester) with 30%, 50% fiber volume fraction under dynamic uniaxial compression are presented. Specimens are loaded in the fiber direction using a servo-hydraulic material testing system for low strain rates and a Kolsky (split Hopkinson) pressure bar for high strain rates, up to 3000/s. The results indicate that the compressive strength of the composite increases with increasing strain rate. Post-test scanning electron microscopy is used to identify the failure modes. In uniaxial compression the specimens are split axially (followed by fiber kink band formation). Based on the experimental results and observations, an energy-based analytic model for studying axial splitting phenomenon in unidirectional fiber reinforced composites is extended to predict the compressive strength of these composites under dynamic uniaxial loading condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号