首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响   总被引:2,自引:0,他引:2  
贺祥  林振山 《环境科学》2017,38(1):22-32
对南京市2013~2015年PM2.5及影响因素的时间变化序列,运用广义可加模型(GAM)分析影响因素交互作用对PM2.5浓度变化的影响.结果表明,PM2.5及影响因素都基本服从正态分布类型,影响因素间具较强相关性,其中气温、气压和水汽压间具有显著相关性.PM2.5浓度变化的单因素GAM模型中,所有影响因素均通过显著性检验,其中SO_2、CO、NO_2等影响因素的模型拟合度较优,方程解释度较高;PM2.5浓度变化的多因素GAM模型中SO_2、CO、NO_2、O_3、平均降雨量(PRE)、平均风速(WIND)和相对湿度(RHU)等影响因素对PM2.5浓度变化解释率为73.9%,对其变化具有显著性影响;通过多因素对PM2.5浓度变化影响效应的诊断分析,得到SO_2、NO_2和WIND与PM2.5浓度变化呈线性关系,CO、O_3、PRE和RHU与PM2.5浓度变化呈非线性关系;在影响因素交互作用对PM2.5浓度变化影响的GAM模型中,SO_2与CO、PRE、RHU间交互作用,CO与NO_2、O_3、PRE、WIND、RHU间交互作用,以及NO_2与WIND、PRE、RHU间交互作用,都在P0.01(或P0.05)水平下显著影响PM2.5浓度变化;大气污染物SO_2、CO及NO_2分别与气象等其它因素的交互作用对PM2.5浓度变化产生最主要影响作用;通过对影响因素交互作用GAM模型可视化三维图分析,定量研究了影响因素交互作用对PM2.5浓度变化的影响特征.结论表明,运用GAM模型,能够定量化分析影响因素交互作用对PM2.5浓度变化的影响,研究方法具有一定创新性,对PM2.5浓度污染与控制研究具有重要意义.  相似文献   

2.
为探究成都市大气环境中气象因子交互作用对臭氧(8h浓度平均最大值,统一用O3表示)浓度变化的影响特征,利用成都市2014~2019年逐日大气污染物资料以及同期的气象资料,采用广义相加模型(generalized additive models,GAMs)分析气象因子对O3浓度变化的影响效应.结果表明,单影响因素的GAMs模型中,O3浓度与最高气温、日照时数、相对湿度、风速、降水量、最大混合层厚度(maximum mixed depth,MMD)和通风系数(ventilation coefficient,VC)间均呈非线性关系,无论全年还是夏季,最高气温、日照时数、MMD和相对湿度对O3浓度影响均较大,值得注意的是,夏季相对湿度和降水量对O3浓度变化的影响较全年更加显著.在构建O3浓度变化的多气象因子GAMs模型中,除平均风速以外的其他气象因子共同作用对O3浓度变化有显著影响,就全年而言,构建的GAMs模型判定系数(R2  相似文献   

3.
精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。  相似文献   

4.
李江苏  段良荣  张天娇 《环境科学》2024,45(4):1938-1949
PM2.5和PM10浓度超标引发的空气质量问题严重影响公众健康,研究PM2.5和PM10浓度对制定有效的污染防控和治理措施具有重要意义.运用时空分析法,分析2018年季度PM2.5和PM10浓度时空分布,并用GWR探究浓度差异的原因.结果表明:(1)PM2.5和PM10的浓度均呈冬春高、夏秋低的季节性规律;四季污染物浓度在胡焕庸线两侧存在显著差异,该线以东地区高浓度聚集在京津冀地区,该线以西地区高浓度聚集在新疆中南部.(2)PM2.5和PM10浓度的Moran’s I在四季均为正,且均在冬季增至最大值;PM2.5和PM10的分布格局基本一致,“高-高”类和“低-低”类集中分布现象明显.(3)各因素对PM2.5和PM10浓度的影响存在较大空间异质性.温度和坡度对PM2.5  相似文献   

5.
南洋  张倩倩  张碧辉 《环境科学》2020,41(2):499-509
为探究中国典型区域地表PM2.5浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM2.5浓度网格化数据进行分析.典型区域多年平均PM2.5浓度从高到低:华东华中地区(40. 5μg·m-3)>华北地区(37. 4μg·m-3)>华南地区(27. 8μg·m-3)>东北地区(23. 7μg·m-3)>四川盆地(22. 4μg·m-3).东北地区PM2.5年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM2.5浓度空间分布上,PM2.5浓度分布呈现显著的空间差异,多年来各区域PM2.5浓度高值分布相对稳定. PM2.5浓度变化的单因素GAM模型中,所有影响因素...  相似文献   

6.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

7.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

8.
2007—2014年北京地区PM2.5质量浓度变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为更好地解析北京地区ρ(PM2.5)的长期变化特征及气流轨迹聚类分析结果,对2007年8月—2014年7月在中国环境科学研究院实测的ρ(PM2.5)数据进行了统计分析,分析其年际、季节和月际变化特征;通过计算PM2.5的AQI分指数,分析了污染等级的时间变化特征;结合后向气流轨迹,对ρ(PM2.5)年际、季节变化与气团来源的关系进行了分析.结果表明:北京地区2008—2013年ρ(PM2.5)年均值分别为111.5、95.8、94.8、80.5、75.2、81.3 μg/m3,整体呈逐年下降趋势,但污染水平依然较高;ρ(PM2.5)由高到低的季节次序为秋季、冬季、春季、夏季,平均值分别为111.6、94.8、77.2、70.5 μg/m3,PM2.5重污染时段主要出现在秋冬季节,并且冬季ρ(PM2.5)近年来逐渐呈上升趋势;ρ(PM2.5)月均值呈单峰型变化,11月最高(为125.3 μg/m3),7月最低(为76.4 μg/m3);轨迹聚类分析发现,途经山西省北部和河北省南部的气流轨迹中ρ(PM2.5)较高,而来自北方及西北方向的气团相对较清洁,ρ(PM2.5)较低.北京地区近些年实施的大气污染减排措施对于控制PM2.5污染取得了一定效果,但针对秋冬季节重污染过程的控制力度仍需要加强,同时也要注意区域污染传输对北京地区ρ(PM2.5)的影响.   相似文献   

9.
灰霾试点城市PM2.5浓度特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用2011年PM2.5监测数据分析了灰霾试点城市PM2.5浓度特征,结果表明:灰霾试点城市PM2.5日超标比例范围为3.3%~42.9%,年均浓度超标严重;灰霾日PM2.5浓度和PM2.5/PM10较非灰霾日分别升高80.0%和4.1%。分析了北京总站点位在12月3-13日污染过程中颗粒物浓度变化特征,结果表明:颗粒物浓度升高和气象条件差是导致能见度降低的两大重要因素,OC/EC变化范围是3.6~11.4,存在严重的二次污染;粒子数浓度与能见度呈现负相关,污染日不同粒径段的粒子数浓度均高于清洁日,91.8%的粒子在1μm以下;地面气象条件和天气形势明显影响PM2.5浓度。  相似文献   

10.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,不仅能够造成灰霾天气,而且会对人体健康造成重大危害。本文以广州市环境监测中心站2009年的监测数据为基础,对广州市区PM2.5的时间变化和原因进行了分析,结果表明广州市区的PM2.5冬季较高,夏季较低,最高浓度出现在10月,最低浓度出现在7月。PM2.5浓度日变化呈现出明显的双峰形;PM2.5浓度的时间变化特征与气象因素和污染源排放密切相关。  相似文献   

11.
宋国君  国潇丹  杨啸  刘帅 《中国环境科学》2018,38(11):4031-4039
首先利用回归树分类方法,对采暖期与非采暖期各日进行气象类型划分,识别出易造成重污染天气的气象类型.其次分别在各气象类型内,以污染源排放量为自变量,利用差分自回归滑动平均与支持向量机(ARIMA+SVM)组合方法建立起PM2.5浓度日均值预测模型,并选取2013年01月~2017年06月间,沈阳市区内9个环境监测点PM2.5浓度日均值进行实证分析.结果表明,使用气象分类下的ARIMA+SVM组合模型对PM2.5浓度日均值进行预测,相比于不划分气象类型时的普通机器学习模型,其模型预测值与实测值趋势的吻合度更高,且对峰-谷值的识别能力更强.在采暖期与非采暖期,组合模型均具有平均绝对误差更低、预测正确率更高的优点.  相似文献   

12.
基于颗粒物浓度集总参数模型建立室内PM2.5预测模型,同时对模型中的关键参数穿透率、沉降率理论模型进行理论计算.以常州市某住宅建筑为例,通过动态模型对穿透率和沉降率模型进行实验验证,实验采样时间为2017年3月~2018年1月.根据实验数据计算换气次数在0.31~0.89h-1范围内PM2.5通过维护结构的穿透率为0.78~0.97,室内PM2.5沉降率为0.3~0.69h-1.本模型能较好地适用于自然通风、机械通风等不同通风工况室内颗粒物浓度预测.当室外PM2.5浓度在135~150μg/m3变化时,使用过滤效率为82%的新风系统可维持室内PM2.5浓度值在40~46μg/m3.  相似文献   

13.
苏南农村地区大气PM2.5元素组成特征及其来源分析   总被引:4,自引:2,他引:4  
为了解苏南农村地区大气细颗粒物的污染水平及其可能的来源,在2002年7月-2003年1月的夏、秋、冬3个季节对雪堰镇和太湖站PM2.5进行采样和分析,得到了PM2.5和14种组成元素的质量浓度.研究表明,苏南农村地区PM2.5的污染水平较高,S,Zn,Pb和As 4种污染元素的质量浓度水平与城市接近;组成元素的季节分布规律存在区域差异,这可能与局地源的贡献,大气细颗粒物中、长距离传输以及复杂的气象条件有关.因子分析结果表明,土壤源、燃煤源、冶金或垃圾焚烧和汽车尾气4类源对PM2.5有明显贡献,说明人类活动对苏南农村地区PM2.5具有重要影响.   相似文献   

14.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中.  相似文献   

15.
基于WRF-Chem模型,结合气象要素,从PM2.5浓度的消减量及时空变化特征等方面模拟分析了煤改电政策实施前后京津冀地区采暖期(2018年11月~2019年3月)PM2.5的排放变化.结果表明,WRF-Chem模型很好地模拟了京津冀地区PM2.5浓度变化,北京、天津和石家庄模拟值与观测值的相关系数分别为0.66、0.66和0.52,表现出良好的相关性.煤改电政策的实施对京津冀重点地区PM2.5减排效果明显,PM2.5日均减少量分布在0.2~6.1μg/m3,减少比例分布在1.2%~7.8%.PM2.5小时均值变化显示,2018年12月PM2.5减少量分布在0.4~8.3μg/m3,减少比例分布在2.3%~7.7%.其中,北京大兴区减排量达8.3μg/m3,天津地区减排比例达7.7%.在特殊气象条件下,煤改电政策影响范围可扩散至山东、江苏、河南北部以及山西西部,PM2.5小时均值减少量最大超过50μg/m3.  相似文献   

16.
为探究低浓度甲醛(FA)单独及与PM2.5联合暴露对哮喘小鼠的影响,选取70只雄性Balb/c小鼠,随机分为5组,分别为:对照组、卵清蛋白(OVA)组、FA+OVA组、PM2.5+OVA组、FA+PM2.5+OVA组,每组14只,其中6只进行气道高反应性(AHR)检测,其余8只用于检测血清T-IgE、肺泡灌洗液(BALF)中IFN-γ、IL-4以及肺组织中活性氧(ROS)、丙二醛(MDA)的含量,并对BALF中炎症细胞进行计数.同时对小鼠肺组织进行H&E染色以及p-p38MAPK和p-p65NF-κB免疫组化分析.结果显示,与OVA组相比,0.5mg/m3FA单独暴露组哮喘小鼠肺部MDA水平显著升高(P<0.001),肺部炎症细胞呈现上升趋势(P>0.05),0.5mg/m3FA和0.5mg/kg PM2.5联合暴露组哮喘小鼠肺部炎症显著加重(P<0.05或P<0.01),肺功能减弱(P<0.01),肺部氧化应激水平以及p38MAPK和NF-κB的磷酸化水平均显著升高(P<0.05或P<0.001),Th2型细胞因子释放显著增加(P<0.01).因此,低浓度FA单独暴露会加重哮喘小鼠肺部损伤而非抑制,并且可进一步促进PM2.5对哮喘小鼠肺部的损伤,即低浓度FA和PM2.5联合暴露会对哮喘小鼠肺部造成严重损害,这可能与ROS介导的p38MAPK途径加剧Th1/Th2型免疫反应失衡有关.  相似文献   

17.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑.  相似文献   

18.
大气细颗粒物(PM2.5)对心血管内皮细胞NOS的影响   总被引:5,自引:0,他引:5  
运用体外试验方法,探讨了大气细颗粒物的心血管毒性及其可能的作用机制采集上海城区大气中的PM25,并以0.01、0.05、0.2、1 mg·mL-1剂量染毒大鼠心血管内皮细胞24 h后,观察PM2.5对心血管内皮细胞内总NOS,iNOS及cNOS活力等指标的影响.发现与对照组相比,0.2 mg·mL-1染毒组的心血管内皮细胞总NOS和iNOS活力显著增加,而cNOS活力显著降低,并且随着PM25染毒剂量的增加,存在剂量-反应关系.这一结果表明,PM2.5可通过诱导心血管内皮细胞的iNOS活性,对心血管系统产生氧化应激损伤,氧化应激作用可能是PM2.5心血管系统毒性的作用机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号