首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对现有的零电压软开关DC/DC变换器存在环流损耗大、占空比丢失严重、软开关范围窄和高频二极管寄生振荡严重等问题。设计了一种采用有限双极性PWM控制的零电压零电流软开关变换器,可在宽输入和宽负载范围内实现超前管零电流开通、零电压关断,滞后管零电流开关。采用RCD缓冲电路,有效抑制了高频整流二极管寄生振荡。相对于传统的零电压软开关变换器,具有环流损耗低、占空比丢失少和软开关范围宽等优点。  相似文献   

2.
针对传统交错并联式双向DC/DC变换器在高频大功率工作时,开关管损耗大的问题,设计了一种零电流软开关交错并联式双向DC/DC变换器;通过在开关过程前后引入谐振,实现零电流开通和零电流关断,降低开关损耗;进一步分时段模态分析了Boost/Buck模式下的电路工作机理,并在其基础上提出了一种适用于特定占空比的改进型零电流软开关双向DC/DC变换器。最后,通过仿真对比,验证了所设计零电流软开关变换器能量转换效率得到了提高。  相似文献   

3.
讨论了四种隔离型交错式DC/DC变换器结构的特点,并在交错式Flyback变换器的基础上,引入三绕组耦合电感概念,实现了Flyback型变换器到Boost型或Buck型变换器的转换.然后,在三绕组耦合电感演绎出的一次侧并联/二次侧串联Flyback-Boost变换器上,采用有源钳位软开关电路,不仅实现了主开关管和辅助开关管的零电压软开关特性,而且只需要一组钳位软开关电路就无损地吸收了两相交错电路的漏感能量、抑制了主开关管的关断电压尖峰.三绕组耦合电感的漏感限制了输出二极管关断电流的下降速率,有效地抑制了二极管的反向恢复电流.最后,设计了一台40V输入、760V输出1kW的三绕组耦合电感实现的一次侧并联/二次侧串联交错式有源钳位软开关Flyback-Boost变换器的试验样机.实验结果验证了理论分析的正确性.  相似文献   

4.
《电网技术》2021,45(10):4134-4141
文章提出了一种用于光伏直流模块的低电压应力零电压关断(zero-voltage-switching,ZVS)高增益Boost变换器。该变换器在传统Boost变换器的二极管支路中串入由1个电流双向流通的电感、1个同步整流开关管和2个电容构成的等效电压源,从而使电压增益变为原拓扑的(1(10)D)倍(D为主开关管占空比),而且减小了功率管和滤波电容的电压应力,并实现了所有开关管的ZVS和二极管的自然关断。分析了所提变换器的工作原理、稳态特性(电压增益、电压应力、电流应力)和软开关实现条件,给出了参数设计方法,并通过一台250W/100kHz实验样机验证了理论分析的正确性。实验表明,该变换器最大效率为97.7%。  相似文献   

5.
无源软开关技术控制和实现简单,工程应用广泛。文中提出一种适用于基本PWM DC/DC变换器的最小电压、电流应力无源无损软开关单元。实现开关管零电流开通、零电压关断,二极管软开关。开关管电压应力没有增大,增加的谐振电感有效抑制其电流峰值。同时,无源软开关单元钳位了二极管电压。在不增大原功率电路半导体器件的电压、电流应力条件下,实现软开关。文中以buck变换器为例,详细分析所提无源软开关方案的工作原理,给出无源网络参数设计过程,通过计算机仿真,并设计一台100 k Hz,200 V/5 A的buck样机。与硬开关进行效率对比,在20%到额定负载范围内,软开关方案的效率均优于硬开关。  相似文献   

6.
针对传统DC-DC变换器电压增益低,开关器件电压应力大和损耗高的问题,在传统Sepic变换器的基础上,引入耦合电感单元和有源开关电感单元,提出了一种高增益耦合电感双管Sepic变换器拓扑结构。该变换器具有高电压增益,避免了变换器工作在极限占空比状态,降低了开关器件电压应力,实现二极管的零电流关断和开关管的零电流开通,缓解二极管的反向恢复问题,减小开关管的损耗,提高变换器的效率。详细分析该变换器的工作原理,推导变换器的电压增益和开关器件的电压应力大小,研究漏感导致的占空比丢失问题对变换器增益的影响,给出关键参数设计,与其他拓扑在电压增益、开关器件电压应力等方面进行性能对比分析,最后设计一台100 W的实验样机,实验结果验证了理论分析的正确性。  相似文献   

7.
杨柳  陈志颖 《电气开关》2008,46(4):19-22
以结合开关理论为基础,提出了一种可以建立软开关PWM变换器的系统方法。应用这种方法,许多种无源和有源软开关PWM变换器家族中所派生出的变换器,如:Buck—Boost变换器、Cuk变换器、Sepic变换器和Zeta变换器都能够通过Buck变换器和Boost变换器这两种最基本的变换器得到,不仅对变换器家族可以进行更加深入的了解,还可以揭示出软开关变换器之间的内在联系。通过对结合开关理论的具体介绍,在对有源PWM软开关变换器中的零电压转换(ZVT)PWMDC/DC变换器的派生变换器电路拓扑的建立原理和得出过程重点阐述的同时。将有源软开关PWM变换器进一步分成了Buck和Boost家族两大类,并证明了所提出的这种建立软开关PWM变换器的方法的正确性和可行性。  相似文献   

8.
提出一种基于开关电容的具有高电压增益和软开关特性的DC-DC变换器拓扑。该拓扑能够在非极端占空比条件下实现高电压增益,并具有类似于传统Boost变换器的PWM电压调节能力。通过谐振软开关技术,实现所有开关管的零电压开通和所有二极管的零电流关断,有利于提高变换器的效率和功率密度。变换器中开关管和二极管承受的电压应力低,允许选择低电压等级、低导通电阻的器件。详细分析变换器拓扑的基本工作原理,对变换器电压增益特性和软开关实现条件等稳态工作特性进行研究。最后,搭建一台输入25~40V、输出400V/1k W的实验样机,对理论分析进行实验验证。  相似文献   

9.
基于有源钳位软开关的双向变换器在直流微电网、电动汽车等场合中被广泛应用,为了研究交错并联软开关双向直流变换器的工作效率以及动态响应性能,本文采用基于有源钳位两相交错并联双向Buck/Boost变换器电路拓扑,通过对该变换器不同模式下的工作模态进行分析,并采用状态平均法详细推导了交错并联软开关双向变换器的稳态模型和交流小信号等效模型,最终进行实验验证,结果表明:该电路拓扑中的所有开关管都能在零电压条件下开通,并且交错并联型拓扑结构可以有效地降低输出电感的电流纹波,使得系统的工作效率相比于常规双向变换器拓扑有所提高,最终通过仿真模型验证了本文所建立的小信号模型的正确性,结合负载动态实验得到该系统补偿后的动态响应性能较好。  相似文献   

10.
提出了一种新型零电流转换(ZCT)移相全桥DC/DC变换器拓扑。该变换器通过在原边增加一个由电容和电感构成的有源辅助电路,在开关管状态发生变化时,控制辅助电路的谐振电流,可实现主功率开关管和辅助开关管的零电流开关(ZCS),消除IGBT拖尾电流引起的开关损耗,同时减小了二极管的反向恢复损耗。辅助电路结构不会增加开关管的导通损耗,还能一定程度上克服传统零电压开关(ZVS)全桥变换器原边环流损耗大和占空比丢失严重的缺点。详细分析了该新型全桥变换器的工作原理以及实现零电流开关的条件,给出了主电路拓扑结构及相关参数选取,根据所选取参数对主电路进行仿真研究,给出了主要仿真波形,结果验证了电路分析的正确性和设计的可行性。  相似文献   

11.
非隔离型高增益软开关DC/DC变换器广泛应用于清洁能源发电系统。所提变换器基于准Z源网络,集成了三绕组耦合电感和倍压单元技术,开关管与电容组成了有源箝位,实现了漏感能量回收;通过对元器件参数和死区时间的配置,所有开关管实现了零电压开关(ZVS),二极管都实现了零电压零电流开关(ZVZCS),提升了变换器的效率。此处详细分析了所提变换器的工作模态、稳态特性下元器件的电压、电流应力。在实验室搭建一台200 W功率、380 V输出电压的实验样机验证了所提变换器的可行性。  相似文献   

12.
针对新能源发电系统输出电压低、电压稳定性差等问题,提出一种非隔离型低输入电流纹波高增益软开关直流变换器。该变换器结合有源钳位技术和耦合电感与二极管-电容倍压结构,提高了变换器的电压增益,降低了开关器件的电压应力。耦合电感自身漏感有效缓解二极管反向恢复问题,并通过有源钳位网络回收利用了漏感的能量,开关管无关断电压尖峰。利用耦合电感漏感,所有开关管均实现了零电压软开关,提高了变换器的效率。详细分析了变换器的拓扑结构与工作原理,并对电压增益、器件电压电流应力、软开关等电路性能进行了分析。最后,搭建了一台40 V输入、400 V输出、额定功率为160 W的试验样机,实验验证了该变换器具有低输入电流纹波、高电压增益、高变换效率和低电压应力等优点。  相似文献   

13.
为提高电动汽车车载电源的效率,针对传统移相全桥DC/DC变换器的副边占空比丢失、变压器磁饱和、副边寄生振荡等问题,提出改进型的移相全桥拓扑结构,通过增加原副边的变比来减小占空比的丢失,串联隔直电容防止变压器磁饱和,采用二极管钳位电路抑制副边二极管的电压振荡.在详细分析移相全桥零电压开关(ZVS)控制策略的基础上,针对该拓扑结构的不同工作状态,分析了钳位二极管的工作原理,明确了变压器和谐振电感位置对电路的影响效果,探讨了副边同步整流在拓扑中的作用.得出该拓扑结构可以将MOS管的应力抑制在输入电压范围之内.最后研制了一台3 kW的样机,采用PI控制策略,通过仿真与实验结果验证了理论分析的正确性.  相似文献   

14.
传统的Boost ZVT PWM变换器的主开关管实现了软开关,但是辅助开关管是在硬开关下关断。因此,变换器的效率低。提出了一种新型的Boost ZVT PWM变换器,详细分析它的工作原理及实现软开关的条件。实验结果证明了所提出的Boost变换器的有源开关管和二极管均实现了软开关,并且在满载时效率可达到94%左右。新型的Boost ZVT PWM变换器的思想也可以扩展到其它的基本变换器拓扑中得到新型零电压转换PWM变换器。  相似文献   

15.
一种新型的高效率Boost PWM变换器的研究   总被引:1,自引:1,他引:0  
梁奇峰  黄少先 《电气自动化》2006,28(1):30-31,35
传统的Boost ZVT PWM变换器的主开关管实现了软开关,但是辅助开关管是在硬开关下关断。因此,变换器的效率低。提出了一种新型的Boost ZVT PWM变换器,详细分析它的工作原理及实现软开关的条件。实验结果证明了所提出的Boost变换器的有源开关管和二极管均实现了软开关,并且在满载时效率可达到94%左右。新型的Boost ZVT PWM变换器的思想也可以扩展到其它的基本变换器拓扑中得到新型零电压转换PWM变换器。  相似文献   

16.
传统的Boost ZVT PWM变换器的主开关管实现了软开关,但是辅助开关管是在硬开关下关断。因此,变换器的效率低。提出了一种新型的Boost ZVT PWM变换器,详细分析它的工作原理及实现软开关的条件。实验结果证明了所提出的Boost变换器的有源开关管和二极管均实现了软开关,并且在满载时效率可达到94%左右。新型的Boost ZVT PWM变换器的思想也可以扩展到其它的基本变换器拓扑中得到新型零电压转换PWM变换器。  相似文献   

17.
在软开关Boost变换器基础上,通过引入Flyback单元,提出了一种高升压增益软开关DC-DC变换器,进一步提高了变换器的电压增益,避免了高占空比,减小了开关管电压应力。因此,可选取低电压等级低导通电阻MOSFET以降低变换器的成本,提高变换器的效率。在开关管关断期间,漏感能量向负载传递,有效利用了漏感能量,且无需额外的吸收电路。此外,变换器实现了开关管的零电压(ZVS)导通和二极管的零电流(ZCS)关断,进而消除了开关管的开通损耗和二极管的反向恢复损耗。研究了高升压增益软开关DC-DC变换器电路的工作特性和占空比丢失的主要原因,分析了该变换器的元器件应力及电路损耗。设计了一台160W的实验样机,实验结果验证了理论分析的正确性。  相似文献   

18.
将传统的L型电流输入隔离型DC/DC变换器与一种DCM(Diode-Capacitor Multiplier)电压增益单元相结合,提出了一种新型ZVS隔离型高增益DC/DC变换器。在继承传统L型电流输入隔离型DC/DC变换器输入电流纹波小、变压器匝数比低等优点的基础上,所提变换器可通过调节DCM增益单元数来调节变换器的输入输出增益比;通过有源箝位电路和漏感的结合,开关均实现了零电压开通,二极管均实现了零电流关断,二极管的反向恢复损耗得到了抑制;借助于所提DCM增益单元,二极管的电压应力以及变压器的绝缘等级得到了有效降低;所有二极管的电压、电流应力均相等,便于散热设计。对变换器的工作原理和性能特点进行了理论分析,并建立了一台输入24 V、输出400 V、功率为200 W的实验样机。实验测试样机最高效率可达95%,验证了理论分析的有效性和正确性。  相似文献   

19.
针对无桥Boost功率因数校正(PFC)变换器在高频工作时功率器件开关损耗大、电压电流应力高,提出了一种无源无损软开关Semi-bridgeless Boost PFC变换器,用于实现开关管和功率二极管的软开关,减小二极管反向恢复电流造成的电压尖峰,有效提高转换效率。详细分析了该软开关无桥Boost PFC变换器的工作原理,制作实验样机对电路的有效性进行了验证,实验结果表明所提软开关无桥变换器能有效减小开关损耗,降低元器件的电压电流应力和电磁干扰,效率高于硬开关无桥Boost PFC变换器。  相似文献   

20.
改进型具有电压钳位的全桥ZVZCS PWM DC/DC变换器   总被引:1,自引:0,他引:1  
提出了一种改进型的具有有源钳位的全桥零电压零电流开关PWM DC/DC变换器.该变换器可以较好地实现超前桥臂开关管的零电压开关,以及滞后桥臂开关管的零电流开关.相对于传统的全桥零电压零电流DC/DC变换器,这种具有有源电压钳位的变换器可以减小由于谐振电路引起的变压器二次侧的振荡问题.它具有辅助电路简单、开关损耗低、导通损耗低和实现能量缓冲吸收等优点.详细分析了变换器的工作原理和特点,并通过一台1kW,100kHz的样机进行了验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号