首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
讨论了一种PFM升压式DC2DC 电压转换器的设计,重点对其关键的基准电压产生、振荡控制信号产生及比 较器设计进行了分析,并采用3μm CMOS 工艺完成芯片的设计。  相似文献   

2.
采用CSMC 0.5μm CMOS工艺设计了一种PFM调制DC-DC升压电路,重点分析了基准电压源、比较器、PFM控制电路和过流保护电路.仿真结果表明,该电路具有低电压启动、输出电压精度高、功耗低和过流保护功能等优点.基于0.5μm双层多晶硅三层金属双阱CMOS工艺的几何设计规则实现了其版图.  相似文献   

3.
本文设计了一种升压型PFM控制DC/DC转换器,该电路可在低输入电压0.9V下工作,利用PFM控制电路,根据负载大小自动切换占空比系数,结构简单、功耗低、在大范围内可获得较低的输出纹波和高效率,输出电压精度为±0.3%。  相似文献   

4.
NCP1402系列是安森美(Onsemi)公司生产的微功率PFM(脉冲频率调制):DC-DC升压变换器,专为利用一节或两节电池供电的便携式装置如手机而设计的。NCP1402系列共包含5个型号(带5种不同的后缀),最多仅需要4只外部元件和消耗仅约30μA(Vout=1.9V)的工作电流,输出1.9~5.0V的升压电压,输出电流容量  相似文献   

5.
<正> NCP1402系列器件是微功耗升压DC-DC变换器,它专门为使用1~2节电池的便携式设备提供1.8~5.0V的电源。启动电压力0.8V,工作时可降至0.3V,当输入为2.0V,输出为3.0V时,输出电流可为200mA。在芯片内部含有PFM(脉冲频率调制振荡器)、PFM控制器、PFM比较器、软启动电路、基准电压电路、驱动器等,其内部框图如图1所示。  相似文献   

6.
一种低功耗PFM升压型DC-DC开关变换器设计   总被引:4,自引:0,他引:4  
基于EPISIL 1.5μm 25V双极工艺,完成了一种低功耗电流控制型PFM DC-DC升压开关变换器芯片的设计,采用Hpsice电路模拟软件对设计进行了验证,达到了相应的设计指标。  相似文献   

7.
文章介绍了一种工作在PWM/PFM双模式下的同步整流升压转换器设计,剖析电路的工作原理,采用0.35μmn阱CMOS工艺流片。通过SPECTRE仿真器模拟,结果显示该电路在输出负载电流是1mA时,输入电源电压0.9V启动,在关机模式下静态电流小于1μA,输出电压调节范围2.5V~5V,输入电压1V~5V,固定频率1.4MHz,允许采用外形扁平而小巧的电感器和陶瓷电容器,从而极大地节省了PCB板的面积,效率高达92%,可以从单节AA电池产生3.3V/260mA的输出或从双节AA电池产生3.3V/600mA的输出。该器件包括驱动管NMOS和同步整流管PMOS,具有斜率补偿的电流模式PWM设计,减少了外部元件的数量。抗振铃电路通过在不连续工作模式下对电感器进行阻尼来抑制EMI。在轻负载情况下工作在PFM模式,重负载情况下工作在PWM模式。  相似文献   

8.
1开关型稳压器开关型稳压器通常利用电感、变压器或电容器作为储能元件来将输入能量传递给输出负载。其反馈电路用于调节能量的传输 ,保证在限定的负载电流范围内保持恒定的输出电压。转换器的基本电路结构包括升压型、降压型和反相型等 ,图1所示是DC -DC变换器的几种典型结构 ,当利用变压器作储能元件时 ,可以实现输出与输入之间的隔离。在电池供电系统中选择开关型DC -DC转换器可以获得较高的效率和较低的热耗 ,从而可有效延长电池的使用寿命。同时通过在输出级添加适当的滤波电路 ,还能够将输出电压纹波降至较小的范围。2开关…  相似文献   

9.
介绍了MAXIM公司推出的双输出升压型DC-DC转换器MAX1817的工作原理和功能特性,给出了电路设计方法和典型应用电路,同时给出了它的外围器件选择说明。  相似文献   

10.
万清  王胜  王成 《电子与封装》2009,9(7):22-25,36
开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。文章首先从系统的角度,阐述了用内带限流保护的可变频调制工作模式,来实现升压型DC-DC电源转换器的原理。同时给出了一种基于变频模式开关电源变换器的设计过程,最后基于Hspice电路模拟软件对设计进行仿真,并通过CMOS工艺流片验证,该开关变换器电路达到了预期的设计指标。采用这种设计模式的DC-DC变换器具有功耗低、转换效率高的特点,电路工作电压范围为1V-5V,输出电压为1.5V-5V可调,步距为0.1V,可用于一般的电池供电设备,最终实现了一种基于VFM的高效非隔离式直流升压电源的电路设计。  相似文献   

11.
主要研究了一种高转换效率、低输出纹波的升压型DC-DC转换器.该转换器具有很高的转换效率、低工作电压、欠电流与过电流检测和节电模式控制等特性.通过带隙基准电压源对转换器内部工作点提供偏置,大大地提高了系统的稳定性,提高了抗电源电压波动,温度的变化以及噪声引起的干扰的抑制.采用0.25μmCMOS工艺,其转换效率可达到90%以上.在输入电压为2.5V的条件下,输出电压为标准的3.3V和5V .  相似文献   

12.
刘永根  游剑  罗萍  张波  李肇基 《微电子学》2007,37(1):76-79,84
设计了一种精准的升压型DC-DC转换器自调节斜坡补偿电路,包括反馈信号产生电路,固定斜率的斜坡信号产生电路,反馈信号转移电路和自调节斜坡信号产生电路四部分。其产生的斜坡信号斜率随输入电压变化而自动精确调节,消除了欠补偿和过补偿现象。与传统的设计相比,该结构具有精度高、电路结构相对简单等特点。最后,给出了具体的仿真结果。  相似文献   

13.
提出了一种输m电流可达750mA,脉宽调制(PwM)和变频调制(PFM)双模式控制的,高效率、高稳定性直流.直流降压转换器.该转换器在负载电流大于80mA时,采用开关频率为lMHz的PwM工作模式;在负载电流小于80mA时,采用开天频率减小和静态电流降低的PFM工作模式,实现了在整个负载电流变化范围(0.02~750mA)内,转换器均保持高效率.而且采用一种快速响应的电压模式控制结构,达到了优异的线性和负载调整特性.芯片采用CSMC公司0.5μm CMOS 2P3M混合信号上艺物理实现.测试结果表明,该电路可根据负载的变化在PWM和PFM模式下自动切换.最大转换效率达96.5%;当负载电流为0.02mA时,转换效率大于55%.该芯片特别适合电池供电的移动系统使用.  相似文献   

14.
提出了一种输出电流可达750mA,脉宽调制(PWM)和变频调制(PFM)双模式控制的,高效率、高稳定性直流-直流降压转换器.该转换器在负载电流大于80mA时,采用开关频率为1MHz的PWM工作模式;在负载电流小于80mA时,采用开关频率减小和静态电流降低的PFM工作模式,实现了在整个负载电流变化范围(0.02~750mA)内,转换器均保持高效率.而且采用一种快速响应的电压模式控制结构,达到了优异的线性和负载调整特性.芯片采用CSMC公司0.5μm CMOS 2P3M混合信号工艺物理实现.测试结果表明,该电路可根据负载的变化在PWM和PFM模式下自动切换.最大转换效率达96.5%;当负载电流为0.02mA时,转换效率大于55%.该芯片特别适合电池供电的移动系统使用.  相似文献   

15.
文章设计了一种用于单片集成DC-DC变换器的高性能带隙基准电压电路。当温度从-40℃~125℃变化时,温度系数为23ppm/k,其电源抑制比(PSRR)为54dB。当输入电压在2.5V~6V变化时,基准电压的变化范围为±0.055mV。  相似文献   

16.
PWM/PFM混合控制DC-DC变换器芯片的设计   总被引:5,自引:0,他引:5  
结合脉冲宽度调制(PWM)和脉冲频率调制(PFM)功率损耗特点,提出了一种降压型PWM/PFM混合控制DC-DC变换器芯片的电路结构,大大提高了全负载范围转换效率。重点讨论了混合控制策略和PWM/PFM切换电路的设计。Hspice模拟仿真结果验证了设计的正确性。  相似文献   

17.
原钢  石寅 《电子学报》2003,31(5):732-736
数控DC-DC变换器由于其自身的特点,易于与数字系统进行单片集成.DC-DC的数字控制算法有很多种,其中比较复杂的算法(如PID)需要在片内集成ADC,增加了设计难度.较为简单的控制方案只使用单一的比较器作为反馈输入部件,但动态性能较差.本文在已有的单比较器恒定步长反馈数控Buck转换器的基础上,提出了一类变步长反馈的方案.由于仍使用单比较器或窗口比较器,它的结构简单且易于集成.它借鉴了对分搜索的思路,能根据输出电压反馈的结果动态地改变占空比的变化步长,从而明显地提高了原有恒定步长反馈数控变换器的动态性能.  相似文献   

18.
结合DC-DC升压转换器的工作原理,从系统稳定性和负载调整率要求的角度出发,提出了一种新颖的设计方法,以确定误差放大器的主要结构和基本参数.与传统的误差放大器相比,该设计加入了动态电路部分,减少了环路的响应时间.另外,改进的电压移位部分不仅减小了芯片的面积,而且简化了误差放大器的设计.文中设计使用0.5μm-BCD工艺对整个升压转换器系统进行了模拟,并在各种工作条件下对系统进行仿真,得出了理想的仿真结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号