首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
对新疆某高硅低品位难选赤铁矿石采用阶段磨矿、阶段高梯度强磁选-反浮选原则流程进行了开发利用工艺技术条件研究。结果表明,用磨矿-强磁粗选-粗精矿再磨-强磁精选-强磁精矿1粗1精反浮选、精选尾矿返回流程处理,可获得铁品位为61.10%、铁回收率为65.63%的铁精矿。  相似文献   

2.
四川某锰品位为21.83%的硅钙质锰矿石锰品位低、嵌布粒度细、磨矿易泥化。为给该矿石的开发利用提供依据,对其进行了原矿预先脱泥—磨矿—强磁选—再磨—阳离子反浮选—阴离子正浮选工艺流程试验。结果表明:原矿预先脱泥后磨细至-0.075 mm占75%,磨矿产品与矿泥混合后经1粗1扫湿式强磁选,得到锰品位为25.23%、回收率为85.92%的强磁选精矿,强磁选精矿再磨至-0.075 mm占85.14%,以硫酸为p H调整剂、十二胺为捕收剂经1粗2扫反浮选,可以得到锰品位为28.86%、回收率为78.57%的反浮选精矿,反浮选精矿以Na2CO3为p H调整剂、六偏磷酸钠为抑制剂、GJBW为捕收剂经1粗2扫正浮选,获得的最终锰精矿锰品位为33.62%、回收率为72.76%。试验结果可以为该硅钙质锰矿石的利用提供技术参考。  相似文献   

3.
通过正-反浮选联合流程对取自齐大山选矿厂的反浮选尾矿进行了再选试验研究,结果表明,以2,4-二羟基苯甲酸为石英抑制剂、油酸钠为捕收剂,在不加pH值调整剂的条件下,当抑制剂用量为800 g/t、捕收剂用量为550 g/t时,正浮选5 min后,粗精矿中铁的回收率可达78.85%,品位为31.86%。正浮选粗精矿反浮选试验结果表明,当磨矿细度达到95.50%-0.045 mm 时,经过1次粗选、2次精选,1次扫选,可获得精矿铁品位66.17%,铁回收率27.64%的分选指标。  相似文献   

4.
针对河北司家营铁矿废石堆存量大、铁品位低、嵌布粒度细、处理难度大的特点,提出采用预选-阶段磨矿-阶段磁选-阴离子反浮选工艺流程处理。结果表明:铁品位为18.79%的废石经永磁干式磁选机抛尾-中细粒高梯度湿式强磁选机抛尾,可以获得铁品位为29.25%、回收率为59.61%的预选精矿,预选精矿经两阶段磨矿-阶段磁选,可以获得铁品位为52.71%、回收率为48.50%的磁选混合精矿,磁选混合精矿以NaOH为pH调整剂、淀粉为抑制剂、CaO为活化剂、MF为反浮选捕收剂,经1粗1精2扫反浮选,获得了铁品位为65.97%、作业回收率为89.21%、对原矿回收率为43.27%的合格精矿,可以为该类废石的资源化利用提供参考。  相似文献   

5.
根据某高磷鲕状赤铁矿磨矿分级产品中铁在各粒级中的分布差异, 采用粗细分级-磁选工艺, 分别进行弱磁-强磁选, 获得了TFe品位为46.8%、TFe回收率为82%的磁选粗精矿。对粗精矿再磨进行一粗两精反浮选, 获得精矿TFe品位为54.5%, TFe回收率为68.3%。  相似文献   

6.
针对我国高硫铝土矿难以利用的现状,以广西某高硫铝土矿为研究对象,采用反浮选脱硫-聚团浮选脱硅原则流程和新型高效铝土矿浮选捕收剂ZY-01进行了选矿试验。确定的选矿工艺流程为1粗1扫1精反浮选脱硫-1粗2扫2精聚团浮铝降硅;采用该流程获得的铝土矿精矿Al2O3品位为63.31%、回收率为78.52%、铝硅比为7.38,硫精矿S品位为16.78%、回收率为80.72%。铝土矿精矿指标满足氧化铝生产要求。  相似文献   

7.
安徽某铁矿选矿厂现场生产的铁精矿-200目89.83%,铁品位为66.21%.为制备超级铁精矿,对该矿样进行了反浮选试验.结果表明:试样采用1粗1精反浮选,可获得铁品位71.76%、铁回收率75.87%的超级铁精矿,尾矿合并再磨至-200目96.21%后再反浮选流程处理,获得铁品位65.66%、回收率21.16%的浮选...  相似文献   

8.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

9.
对某含滑石铜钼混合精矿进行了铜钼分离试验研究。通过一粗两扫七精闭路浮选流程获得了钼品位34.46%、钼作业回收率88.97%的钼精矿和铜品位23.52%、回收率99.83%的铜精矿。通过辉钼矿-滑石反浮选分离探索试验获得钼品位45.16%、钼作业回收率97.91%的最终钼精矿。  相似文献   

10.
为获得高品质的银铅精矿,对某高硫银铅锌多金属矿石分别进行异步浮选—粗精矿全部再磨浮选、异步快速浮选—中矿集中再磨浮选和分段分速异步浮选—粗精矿部分再磨浮选试验。试验结果表明:在磨矿细度为-0.074 mm 70%的情况下,分段分速异步浮选—粗精矿部分再磨浮选优于其余两种工艺,浮选流程获得的银铅精矿银品位621 g/t、银回收率54.18%,铜品位0.84%、铜回收率34.62%,铅品位62.78%、铅回收率89.42%,锌品位6.45%、锌回收率5.83%。  相似文献   

11.
对湖南某石英型赤褐铁矿进行了选择性絮凝-强磁选-反浮选试验研究。结果表明, 在磨矿细度-0.074 mm粒级占90.80%、水玻璃用量800 g/t、聚丙烯酰胺用量100 g/t、磁选粗选磁场强度1.4 T、扫选磁场强度1.6 T条件下, 获得了铁品位56.17%、回收率60.12%的铁精矿; 强磁选尾矿进行反浮选, 获得了铁品位47.90%、铁回收率31.46%的中矿和铁品位15.69%、铁回收率8.41%的尾矿。选择性絮凝有利于矿泥与铁矿的分离, 可提高铁的回收效果。  相似文献   

12.
新疆某镜铁矿选矿实验研究   总被引:1,自引:1,他引:0  
曹卫国 《矿冶工程》2011,31(1):39-42
采用弱磁-强磁-反浮选工艺对新疆某难选镜铁矿进行了选矿试验研究。原矿磨至-0.074 mm粒级占85%, 在弱选磁场强为167 kA/m、强磁选场强为0.8 T的条件下通过弱磁-强磁工艺获得反浮选的给矿, 在捕收剂JH用量为860 g/t、NaOH用量为1 280 g/t、玉米淀粉用量为1 000 g/t、CaO用量为500 g/t时, 经一粗三扫一精反浮选流程, 可获得铁精矿品位64.12%、回收率70.39%的较好指标。  相似文献   

13.
随着入选铁矿石中菱铁矿含量的升高,东鞍山混磁精反浮选精矿铁品位和铁回收率均呈下降趋势。为了确保高菱铁矿矿石资源的顺利开发,并改善反浮选精矿指标,东北大学用新研制的改性脂肪酸类常温捕收剂DTX-1,对东鞍山混磁精进行了先正浮选菱铁矿、后反浮选石英等脉石矿物的分步浮选试验。结果表明,对东鞍山选矿厂混磁精进行1次开路正浮选菱铁矿,1粗1精2扫、中矿顺序返回闭路反浮选脱硅,最终可获得铁品位为6587%、铁回收率为6792%的铁精矿,与现场1粗1精3扫、中矿顺序返回闭路反浮选精矿指标比较,精矿铁品位和铁回收率分别提高了2.47和2.82个百分点,在工艺流程复杂性相当的情况下,产品指标得到了显著改善。  相似文献   

14.
刘军  杨任新  王炬  陆虎 《金属矿山》2018,47(10):70-75
姑山赤铁矿石硬度大、嵌布粒度极微细,目前的选矿工艺指标低(块精矿铁品位48%、粉精矿铁品位57%)。为探索提高姑山极微细粒赤铁矿石选矿工艺指标的途径,在实验室进行了阶段磨矿-阶段强磁选-阴离子反浮选探索试验。结果表明:在一段磨矿细度为-0.074 mm占85%条件下,经一阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、637 kA/m),强磁选精矿再磨至-0.030 mm占87%,经二阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、716 kA/m)-1粗1精阴离子反浮选(以NaOH为pH调整剂、淀粉为抑制剂、石灰为活化剂、RA-915为捕收剂),获得的浮选精矿铁品位可达63.96%,说明采用阶段磨矿-阶段强磁选-阴离子反浮选工艺将姑山铁矿铁精矿品位提高至63%以上在技术上是可行的。试验结果可以为姑山极微细粒赤铁矿石合理选矿工艺流程的确定提供参考。  相似文献   

15.
针对永州某地高泥细粒的贫赤铁矿采用选择性絮凝脱泥-强磁抛尾-阳离子反浮选组合新技术进行了选矿工艺研究。试验结果表明, 原矿经聚丙烯酰胺絮凝脱泥, 磁场强度960 kA/m下强磁选别, 得到含铁55%、回收率为85%的磁铁精矿; 后经GE-609A阳离子反浮选, 获得了品位为59.8%、回收率为94.2%的铁精矿。  相似文献   

16.
魏茜 《矿冶工程》2013,33(6):46-49
对某低品位难选氧化铁矿进行了阶段磨矿-弱磁-强磁-阴离子反浮选试验研究。首先在磨矿粒度-0.074 mm粒级占65%的条件下通过预先作业抛尾, 因矿石中有用矿物嵌布不均匀, 粒度较细, 选择对粗精矿进行再磨。再磨后的强磁精矿单独反浮选得到浮选精矿与再磨弱磁精矿混合得到最终铁精矿。全流程试验获得了铁品位为61.53%、铁回收率为63.31%的混合铁精矿。  相似文献   

17.
孙达 《矿冶工程》2011,31(1):43-46
对某微细粒嵌布的鲕状赤铁矿采用阶段磨矿-强磁-反浮选工艺处理后的尾矿进行了提高回收率的工艺试验研究。结果发现, 该矿样嵌布粒度极细, 单体解离度达到85%时矿样的平均粒度为22.6 μm, 采用常规选矿方法很难对其进行回收。通过试验研究, 采用一次粗选一次扫选的絮凝-强磁选可得到铁品位56.07%、作业回收率60.44%的铁精矿, 综合原矿回收率提高了28.29%。  相似文献   

18.
用旋流-静态微泡浮选柱反浮选磁选铁精矿   总被引:1,自引:0,他引:1  
用旋流-静态微泡浮选柱和浮选机对某铁矿选厂含铁42.00%的低品位混合磁选铁精矿进行了提高精矿品位的反浮选对比小型试验,结果表明,同样是1次粗选,浮选柱精矿品位达67%左右,比浮选机高约3个百分点,但尾矿品位也较高。为此,对浮选柱进行了增设脉动磁系和稳流管的改进。改进后的浮选柱不仅保持了精矿品位高的优势,而且尾矿品位大幅度降低,1次粗选可使精矿品位达到67.85%,回收率为79.22%,而浮选机需经过一粗一精一扫3次选别才能获得与此相近的指标。  相似文献   

19.
河北某铁矿混磁精反浮选精矿指标较差,主要是由于铁矿物单体解离不充分和反浮选效果不理想造成。为提高反浮选提铁降硅效果,改善分选指标,对现场混磁精进行了反浮选工艺技术研究。结果表明:在磨矿细度为-0.043 mm占80.48%的情况下,采用1粗1精2扫、中矿顺序返回流程处理,最终获得了铁品位为63.98%、铁回收率为81.60%的铁精矿;与现场工艺相比,新工艺增加了混磁精再磨作业,精选和扫选次数各减少了1次,精矿铁品位和铁回收率分别提高了1.70和11.01个百分点,选矿指标改善显著。  相似文献   

20.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号