首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
采用硬度检测、拉伸力学性能测试、金相、扫描及透射电镜观察等方法,研究了挤压态Mg-12Gd-3Y-0.6Zr合金经T4、T5和T6热处理后显微组织及力学性能的变化.结果表明:挤压态合金宜采用T5热处理.经T5热处理后,合金的屈服强度、抗拉强度分别达到372、403 MPa,远高于T4、T6处理的,其原因在于T5热处理后合金中存在大量棱镜片状第二相.T6热处理时,虽然合金的时效强化效果优于T5态合金,但晶粒长大严重降低了合金的力学性能.  相似文献   

2.
采用失重法、扫描电子显微镜、光学显微镜研究了热处理对Mg-9Gd-2Y-0.6Zr合金显微组织和耐蚀性的影响。结果表明:合金铸态组织由α-Mg基体和粗大的枝晶β相组成,热处理后,合金中的β相经过溶解再析出的过程,β相由断续网状转变为方块颗粒状;热处理工艺显著提高了合金在Hanks模型中的耐蚀性,且腐蚀产物以Mg(OH)2为主。  相似文献   

3.
研究了合金元素对Mg-12Gd-2Y-1.5Sm-0.5Zr合金显微组织和力学性能的影响.结果表明,该合金晶粒组织细小,少量Y、Sm和大量Gd固溶在镁基体里,同时有少量MgGd3、Mg24Y5和Mg41Sm5相析出;合金在室温、200、250℃下的抗拉强度分别为258、304、330 MPa;断裂为脆性断裂,与合金的低伸长率相对应.  相似文献   

4.
二次挤压对Mg-12Gd-3Y-0.6Zr合金显微组织及力学性能的影响   总被引:2,自引:2,他引:0  
利用光学显微镜、扫描电子显微镜、X射线衍射仪等研究二次挤压对Mg-12Gd-3Y-0.6Zr合金显微组织及力学性能的影响。研究表明:该合金经二次挤压后,晶粒尺寸细化至6μm,提高细晶强化效果;粗大Mg5Gd1-xYx相增多,降低固溶强化效果;{0002}基面织构的减弱降低织构强化效果;在三者的综合作用下,合金经二次挤压后,强度有所降低,但伸长率却大幅度提高,达到20.5%,较一次挤压态合金的伸长率提高107.1%;一次挤压态合金的断裂方式是以解理断裂为主的混合断裂,二次挤压态合金的断裂方式为韧性断裂。  相似文献   

5.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

6.
本文对热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60h。实验最终力学性能参数为:维氏硬度89HV,极限抗拉强度262MPa,屈服强度218MPa,延伸率10.4%。基于实验结果分析,可以发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

7.
采用快速凝固技术制备Mg-5Zn-1Y-0.6Zr合金,用XRD、SEM、HRTEM、显微硬度测量等分析方法研究其凝固组织和性能.结果表明,合金由α-Mg固溶体、晶界处不连续分布的I(Mg3Zn6Y)准晶相和非晶相组成.根据热传导理论,采用一维傅立叶热传导方程计算了合金的冷却速度.冷却速度的提高使得晶粒细化、成分均匀、非晶相含量增多.硬度(HV)随冷速的提高显著增大,最大值为167.23,是普通凝固合金的2.2倍.  相似文献   

8.
挤压温度对Mg-9Gd-4Y-0.6Zr合金组织与力学性能的影响   总被引:8,自引:0,他引:8  
为提高Mg-9Gd-4Y-0.6Zr合金的强度,研究了不同温度下的挤压组织对合金力学性能的影响。结果表明,随着挤压温度从500℃降低到400℃,其晶粒度也从126μm细化到7.4μm,抗拉强度和延伸率分别从200.1MPa和2.93%提高到312.4 MPa和5.6%。通过力学性能和晶粒尺寸之间的关系计算出该合金的Hall-Petch常数Ky为327.6 MPa.μm1/2,明显高于纯镁及常规镁合金的Ky。大量稀土元素的固溶及其第二相粒子对晶界和位错运动的阻碍作用是合金Ky值较高的主要原因。  相似文献   

9.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

10.
研究了不同固溶处理工艺对Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金显微组织和力学性能的影响。合金的铸态显微组织主要由α-Mg和(Mg,Zn)3(Sm,Gd)1共晶相组成。510℃,4 h为最佳固溶处理条件,晶界附近的共晶相几乎全部溶于镁基体中,合金固溶态的室温抗拉强度为246 MPa,延伸率为11.3%。合金200℃时效析出序列为Mgssss→β’’(D019)→β’(bct)→β(fcc),峰时效态合金的屈服强度和抗拉强度达到185 MPa和282 MPa,延伸率为6.1%。  相似文献   

11.
研究T4和T6热处理状态下高真空压铸Mg-8Gd-3Y-0.4Zr(质量分数,%)合金的微观组织、化合物含量、力学性能及断裂行为。铸态Mg-8Gd-3Y-0.4Zr合金微观组织主要由α-Mg和共晶Mg24(Gd,Y)5化合物组成。经固溶处理后,共晶化合物大量溶解于镁基体,合金主要含过饱和α-Mg及方块相。固溶合金中方块相的含量随固溶温度的升高而增大,力学性能也有所提高。根据微观组织结果,确定475℃,2 h为Mg-8Gd-3Y-0.4Zr合金最优固溶方案。合金的最佳屈服强度为222.1 MPa,延伸率可达15.4%。铸态,T4状态下和T6状态下合金的拉伸断裂模式为穿晶准解理断裂。  相似文献   

12.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造 Mg-10Gd-3Y-0.5Zr 镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225℃和250℃时效下的最优T6热处理工艺分别为(525℃,12 h+225℃,14 h)和(525℃,12 h+250℃,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg-10Gd-3Y-0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

13.
采用DSC、SEM、EDS、OM等检测方法研究了Mg-9.8Gd-3.5Y-2Zn-0.5Zr合金铸锭在505~535 ℃均匀化处理0~84 h后的组织演变规律。结果表明,铸态组织呈枝晶状,第二相含量为19.86%,晶间第二相主要由白色点状共晶相和块状LPSO相组成,晶内第二相为少量针状LPSO相、花瓣状Zr团簇相和方形富稀土相。均匀化处理后的LPSO相形貌为晶间块状和晶内片层状两种。晶内片层状LPSO相的含量受均匀化温度和均匀化时间的影响。在505~525 ℃下,晶内片层状LPSO相随均匀化温度的升高,生长速度加快,数量增多。在相同均匀化温度下延长保温时间,晶内片层状LPSO相沿晶界向基体内部析出,贯穿晶粒后开始粗化。535 ℃下晶间块状LPSO相转变为W相,晶内片层状LPSO相溶解进入基体。晶间LPSO相对晶界迁移起钉扎作用,在505~525 ℃均匀化,随着保温时间的延长,晶粒长大幅度并不明显。在535 ℃均匀化,晶间LPSO相大量溶解,晶粒开始急剧长大。  相似文献   

14.
采用光学显微镜、扫描电镜、X射线衍射仪、XHB-3000型布氏硬度计和万能电子拉伸实验机等研究了Mg-11Gd-3Y-0.8Ca-0.5Zr合金的最佳热处理工艺和热处理对合金显微组织及性能的影响。结果表明:合金的最佳固溶工艺为485℃×16 h+505℃×16 h,时效工艺为225℃×12 h。铸态合金主要由初生相α-Mg基体和大量处于晶界处网络状的Mg5Gd、Mg24Y5、Mg2Ca相组成。经固溶时效后,相种类没有变化,但晶界变得清晰,第二相的形貌显著改变,呈颗粒状和短棒状均匀分布在基体上,组织得到明显改善,合金的力学性能显著提高,时效态合金的抗拉强度、屈服强度及硬度均显著优于铸态合金,分别由原来的217 MPa、185 MPa和92 HB增加到265 MPa、228 MPa和121 HB,这主要归功于时效沉淀强化的作用。  相似文献   

15.
通过差热分析(DSC)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等分析手段研究了不同固溶处理工艺对挤压态Mg-9.2Gd-1.9Y-1.8Zn-0.5Zr合金微观组织和力学性能的影响.结果表明:挤压态Mg-9.2Gd-1.9Y-1.8Zn-0.5Zr合金经过固溶处理后显微组织主要由α-Mg基体、Mg1...  相似文献   

16.
研究多循环低温交变(液氮浸泡处理)和拉伸温度对挤压态Mg10Gd3Y0.5Zr镁合金的微观组织、力学性能以及断裂机制的影响。结果表明,Mg10Gd3Y0.5Zr合金经10d液氮浸泡或10个周期高低温交变循环后,合金室温力学性能基本不变;而经过20个周期高低温循环后,合金的室温抗拉强度由398MPa升高到417MPa。在196°C下拉伸时,挤压态Mg10Gd3Y0.5Zr镁合金的屈服强度和抗拉强度均大幅度提高,分别为349MPa和506MPa,分别增长了18%和27%。合金室温断裂机制为穿晶解理断裂,而低温条件下为韧性断裂和解理断裂并存的混合断裂机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号