首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen–oxygen fuel cells using an alkaline anion exchange membrane were prepared and evaluated. Various non-platinum catalyst materials were investigated by fabricating membrane-electrode assemblies (MEAs) using Tokuyama membrane (# A201) and compared with commercial noble metal catalysts. Co and Fe phthalocyanine catalyst materials were synthesized using multi-walled carbon nanotubes (MWCNTs) as support materials. X-ray photoelectron spectroscopic study was conducted in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT and commercial Pt/C catalysts. The oxygen reduction reaction kinetics on these catalyst materials were evaluated using rotating disk electrodes in 0.1 M KOH solution and the current density values were consistently higher for Co phthalocyanine based electrodes compared to Fe phthalocyanine. The fuel cell performance of the MEAs with Co and Fe phthalocyanines and Tanaka Kikinzoku Kogyo Pt/C cathode catalysts were 100, 60 and 120 mW cm−2 using H2 and O2 gases.  相似文献   

2.
The alkaline anion exchange membrane fuel cell (AEMFC) is one of the green solutions for the growing need for energy conversion technologies. For the first time, we propose a natural shungite based non-precious metal catalyst (NPMC) as an alternative cathode catalyst to Pt-based materials for AEMFCs application. The Co and Fe phthalocyanine (Pc)-modified shungite materials were prepared via pyrolysis and used for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) studies. The most promising ORR performance was observed in alkaline media for FePc-modified and acid-leached shungite-based NPMC material. The catalysts were also evaluated as cathode materials in a single cell AEMFC and peak power densities of 232 and 234 mW cm?2 at 60 °C using H2 and O2 gases at 100% RH were observed for CoPc- and FePc-modified acid-treated materials, respectively.  相似文献   

3.
Low temperature fuel cells, such as the proton exchange membrane (PEM) fuel cell, have required the use of highly active catalysts to promote both the fuel oxidation at the anode and oxygen reduction at the cathode. Attention has been particularly given to the oxygen reduction reaction (ORR) since this appears to be responsible for major voltage losses within the cell. To provide the requisite activity and minimse losses, precious metal catalysts (containing Pt) continue to be used for the cathode catalyst. At the same time, much research is in progress to reduce the costs associated with Pt cathode catalysts, by identifying and developing non-precious metal alternatives. This review outlines classes of non-precious metal systems that have been investigated over the past 10 years. Whilst none of these so far have provided the performance and durability of Pt systems some, such as transition metals supported on porous carbons, have demonstrated reasonable electrocatalytic activity. Of the newer catalysts, iron-based nanostructures on nitrogen-functionalised mesoporous carbons are beginning to emerge as possible contenders for future commercial PEMFC systems.  相似文献   

4.
For application in a microbial fuel cell (MFC), transition metal and nitrogen co-doped nanocarbon catalysts were synthesised by pyrolysis of multi-walled carbon nanotubes (MWCNTs) in the presence of iron- or cobalt chloride and nitrogen source. For the physicochemical characterisation of the catalysts, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) was used. The results obtained by rotating disk electrode (RDE) method showed an extraordinary electrocatalytic activity of these catalysts towards oxygen reduction reaction (ORR) in neutral media, which was also confirmed by the MFC results. The Co-N-CNT and Fe-N-CNT cathode catalysts exhibited maximum power density of 5.1 W m?3 and 6 W m?3, respectively. Higher ORR activity and improved electric output in the MFC could be attributed to the formation of the active nitrogen-metal centers. All findings suggest that these materials can be used as potential cathode catalysts for ORR in MFC to replace expensive noble-metal based materials.  相似文献   

5.
A direct borohydride fuel cell (DBFC) is constructed using a cathode based on iron phthalocyanine (FePc) catalyst supported on active carbon (AC), and a AB5-type hydrogen storage alloy (MmNi3.55Co0.75Mn0.4Al0.3) was used as the anode catalyst. The electrochemical properties are investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV), etc. methods. The electrochemical experiments show that FePc-catalyzed cathode not only exhibits considerable electrocatalytic activity for oxygen reduction in the BH4 solutions, but also the existence of BH4 ions has almost no negative influences on the discharge performances of the air-breathing cathode. At the optimum conditions of 6 M KOH + 0.8 M KBH4 and room temperature, the maximal power density of 92 mW cm−2 is obtained for this cell with a discharge current density of 175 mA cm−2 at a cell voltage of 0.53 V. The new type alkaline fuel cell overcomes the problem of the conventional fuel cell in which both noble metal catalysts and expensive ion exchange membrane were used.  相似文献   

6.
Rhodium with activated carbon as carbon base layer (Rh/AC) was exploited as an oxygen reduction reaction (ORR) catalyst to explore its applicability in microbial fuel cell (MFC). Four MFCs were fabricated using the Rh/AC catalyst, adopting varying Rh loadings of 0.5, 1.0 and 2.0 mg cm−2 and without Rh on carbon felt cathode in order to understand the optimum loading of this catalyst to enhance the performance of MFC. The participation of Rh/AC in ORR was confirmed by cyclic voltammetry and electron impedance spectroscopy analysis, which supported the enhanced charge transfer capacity of the cathode modified with the prepared catalysts. Volumetric power density of MFC was found to be improved by 2.6 times when Rh/AC was used as cathode catalyst (9.36 W m−3) at a loading of 2.0 mg cm−2 in comparison to the control MFC (3.65 W m−3) without Rh on the cathode. It was thus inferred that the increase in the Rh loading up to 2 mg cm−2 can improve the performance of MFC significantly.  相似文献   

7.
Performance of microbial fuel cells (MFCs) with carbon supported nickel phthalocyanine (NiPc)MnOx composite (MFC-1) and nickel phthalocyanine (MFC-2) incorporated cathode was compared with a control MFC with non-catalysed carbon felt as cathode (MFC-3) and MFC-4 having Pt on cathode (as benchmark reference control). MFC-1 exhibited power density of 8.02 Wm?3, which was four folds higher than control MFC-3 (2.08 Wm?3) and 1.14 times higher than MFC-2 (6.97 Wm?3). Coulombic efficiency of 30.3% obtained in MFC-1 was almost double of that obtained for control MFC-3 and it was 5.4% lesser as compared to MFC-4 (35.7%). Linear sweep voltammetry study of cathodes revealed that NiPc-MnOx could enhance the electrocatalytic activity of oxygen reduction reaction (ORR) in comparison to control cathode. However, the power recovery from MFC-1 was noted little lower than what obtained from MFC-4 (10.58 Wm?3), however the cost normalized power was two times higher than Pt catalyst on cathode. Thus, NiPc-MnOx based catalyst developed in this study has potential to enhance ORR in cathodes of MFCs in order to harvest more power.  相似文献   

8.
With the advantages of clean, efficient and energy-saving, microbial fuel cells (MFCs) were characterized with perfect significance in the field of degrading environmental pollutants and generating electricity meanwhile. The cathode materials affected the activity of oxygen reduction reaction (ORR), and affected the power generation performance for MFCs. There were many kinds of nano materials played an important role in the field of cathode catalysis. The advantages of metal and non-metal composites were easy to obtain and low cost; layered double hydroxide (LDH) was easy to control and compound, and could be fully realized functionalization; metal organic frameworks (MOFs) were widely used since their porosity, high specific surface area and high activity; covalent organic frameworks (COFs) were low density and easy to be modified, so as to modify and realize functionalization; MXene was an excellent two-dimensional material, which could provide more channels for the movement of ions. The nano materials formed by the composite of various materials combined the advantages of various materials and played key role in improving ORR performance of MFCs.  相似文献   

9.
The performance of pyrolyzed and plasma-treated non-precious catalysts for the oxygen reduction is discussed in the light of their application in microbial fuel cells. An Ar-radio frequency (RF) plasma treatment is applied to enhance the electrochemical activity of iron(II) phthalocyanine (FePc)-based catalysts. The electrochemical properties of the catalysts are analyzed by galvanodynamic linear sweep voltammetry and chronoamperometric experiments. Surface elemental analysis of the catalysts is examined by means of X-ray photoelectron spectroscopy (XPS). The influence of plasma power and treatment time on the elemental surface concentration and performance of the catalysts is investigated. The electrochemical activity, expressed in terms of the current density at 0 V vs. Ag/AgCl, is up to 40% higher for the plasma-treated samples than for pyrolyzed ones. It is found that optimal treatment time was 30 min and optimal plasma power was 150 W for the best electroactivity of FePc-based catalysts. From the results of XPS data, it is revealed that Ar-plasma treatment of the catalysts leads to an increase in the oxygen and nitrogen concentration on the catalysts surface. A correlation is found between the activity and surface concentration of oxygen and nitrogen on the catalysts’ surface.  相似文献   

10.
Exploring advanced electrode materials with high electrochemical performance and sufficient durability is crucial to the commercialization of solid oxide fuel cells (SOFCs). Herein, a Ruddlesden-Popper Sr2·9La0·1Fe1·9Ni0·1O7?δ (SLFN) oxide is systematically evaluated as efficient oxygen electrode material. La and Ni co-doping strategy demonstrates improved oxygen desorption ability and promoted electrochemical activity of pristine Sr3Fe2O7?δ (SF) toward oxygen reduction react (ORR). Further, the ORR process of the SLFN electrode is probed by electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) technique. The button cell with the SLFN cathode delivers a peak power density of 1.01 W cm?2 at 700 °C, along with desirable stability over a period of 60 h. This study offers a feasible strategy for developing Ruddlesden-Popper type cathode candidates for SOFCs.  相似文献   

11.
The use of Pt-based cathode catalyst materials hinders the widespread application of anion exchange membrane fuel cells (AEMFCs). Herein, we present a non-precious metal catalyst (NPMC) material based on pyrolysed Fe and Co co-doped electrospun carbon nanofibres (CNFs). The prepared materials are studied as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts in alkaline and acidic environments. High activity towards the ORR in alkaline solution indicated the suitability of the prepared NPMCs for the application at the AEMFC cathode. In the AEMFC test, the membrane-electrode assembly bearing a cathode with the nanofibre-based catalyst prepared with the ionic liquid (IL) (Fe/Co/IL–CNF–800b) showed the maximum power density (Pmax) of 195 mW cm−2, which is 78% of the Pmax obtained with a commercial Pt/C cathode catalyst. Such high ORR electrocatalytic activity was attributed to the unique CNF structure, high micro-mesoporosity, different nature of nitrogen species and metal-Nx active centres.  相似文献   

12.
Microbial fuel cell (MFC), which can produce electricity during treatment of wastewater, has become one of the emerging technologies in the field of environmental protection and energy recovery. Of all parts of MFC, the electrode materials play a crucial role in the electricity generation. In this study, we investigate the performance of carbon nanotube (CNT) modified carbon cloth electrodes in single-chamber MFC. The MFC is first inoculated with bacteria in wastewater and then its capability of using acetate sodium as fuel is examined. The results show that the MFC with CNT coated onto carbon cloth electrode improves the power density. In this study, the obtained maximum power density is 65 mW m−2, the highest chemical oxygen demand (COD) removal efficiency is 95%, and the maximum Coulombic efficiency is 67%. Compared with other reported studies, the CNT/carbon cloth composite electrode has demonstrated high potential for the use of MFC.  相似文献   

13.
In this study, four different catalysts (i.e., carbon black, nickel nanoparticle (Ni)/C, Phthalocyanine/C and copper-phthalocyanine/C), were tested in a two-chamber Microbial Fuel Cell (MFC) and their performances were compared with Pt as the common cathode catalyst in MFC. The characterization of catalysts was done by TEM, XPS and EDX and their electrochemical characteristics were compared by cyclic voltammetry (CV) and Linear Sweep Voltammetry (LSV). The results proved that copper phthalocyanine and nickel nanoparticles are potential alternatives catalyst for Pt. Even copper-phthalocyanine generated power is almost the same as Pt. The CV and LSV results reported high electrochemical activity of these catalysts. The maximum power density and coulombic efficiency was achieved by copper-phthalocyanine/C as 118.2 mW/m2 and 29.3%.  相似文献   

14.
In this paper, we investigated the use of polyamidoamine (PAMAM) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) as a promising type of cathode catalyst for air-cathode single chamber microbial fuel cells (SCMFCs). The Pt-DENs, prepared via template synthesis method, have uniform diameter distribution with size range of 3-5 nm. The Pt-DENs then loaded on to a carbon substrate. For comparison, we also electrodeposited Pt on carbon substrate. The calculation shows that the loading amount of Pt-DENs on carbon substrate is about 0.1 mg cm−2, which is three times lower than that of the electrodeposited Pt (0.3 mg cm−2). By measuring batch experiments, the results show that Pt-DENs in air-cathode SCMFCs have a power density of 630 ± 5 mW m−2 and a current density of 5200 ± 10 mA m−2 (based on the projected anodic surface area), which is significantly better than electrodeposited Pt cathodes (power density: 275 ± 5 mW m−2 and current density: 2050 ± 10 mA m−2). Additionally, Pt-DENs-based cathodes resulted in a higher power production with 129.1% as compared to cathode with electrodeposited Pt. This finding suggests that Pt-DENs in MFC cathodes is a better catalyst and has a lower loading amount than electrodeposited Pt, and may serve as a novel and alternative catalyst to previously used noble metals in MFC applications.  相似文献   

15.
Microbial fuel cells, an emerging technology has been paid a great attention in recent years, due to its unique advantages in treating wastewater to portable water, together with the generation of useful electricity, with the help of bio-active anodes and electrochemical cathodes, simultaneously. When applying this technology in a practical scale, the indigenous bacteria present in the wastewater catalyze the breakdown of organic matter in the anode compartment, with generation of electrons and in the cathode compartment an oxidant, usually the oxygen present in the air, take the electron and reduce to water (oxygen reduction reaction, ORR). An ideal ORR catalyst should be highly active, durable, scalable, and most importantly it should be cost effective. Generally, platinum-based catalyst is utilized, however, due to the high cost of Pt based catalysts, many cheap, cost effective catalyst have been identified as efficient ORR catalyst. Carbon based catalysts known to possess good electronic conductivity, desirable surface area, high stability, together when doped with heteroatoms and cheap metals is found to remarkably enhance the ORR activity. Although a lot of research has been done in view of developing carbon based cheap, cost-effective catalysts, still their collective information has not been reviewed. In this article we anticipate reviewing various non-precious metal and metal-free catalysts that are synthesized and investigated for MFCs, factors that affect the ORR activity, catalyst designing strategies, membranes utilized for MFCs, together with the cost comparison of non-precious and metal-free catalysts with respect to Pt based catalysts have been summarized. We anticipate that this review could offer researchers an overview of the catalyst developed so far in the literatures and provides a direction to the young researchers.  相似文献   

16.
Microbial fuel cells (MFC) are systems that enable biochemical activities of bacteria to generate the electricity. These systems are of great interest because of their designs that enable biological activity in organic wastes to be transformed into direct electrical energy. In order to increase the commercial usage of MFCs, it is necessary to increase the power output of the system. So as to improve MFC performance, used material selection, the pH value of the used bacterial medium and the choice of the appropriate substrate are very important. In this study, oxidation bacteria Thiobacillus ferrooxidans on the cathode and mixed culture bacteria on the anode of MFC were used. Different anode and cathode pH values were examined in MFC. Best open circuit potential result (0.8 V) was obtained at anode pH 8 and cathode pH 2 conditions. In addition, three different substrates had been used in the anode. In the conditions of acetate the most stable and high valued curve was obtained. The open circuit potential had reached 0.726 V, and power density had reached 0.88 mW/cm2.  相似文献   

17.
This paper evaluated the oxygen reduction reaction (ORR) in a microbial fuel cell (MFC) system by using chemically and physically activated electrospun carbon nanofibers (ACNFs) in an MFC and comparing their performance with that of plain carbon paper. The chemical and physical activation was carried out by KOH reagents and CO2 gas to increase the electrode surface area and the catalytic activity. As a result, it was found that the MFC with the chemically activated carbon nanofibers (ACNFs) exhibited better catalytic activity than that of the physically activated ACNFs. Chemically ACNFs with 8 M KOH were found to be one of the most promising candidates for the ORR and could generate up to 3.17 times more power than that of the carbon paper. The ACNFs with 8 M KOH exhibited 78% more power generation than that of the physically activated ACNFs and exhibited 16% more power generation than the chemically activated ACNFs with 4 M KOH. The power per cost of ACNFs with 8 M KOH is 2.65 times greater than that of the traditionally used platinum cathode. Thus, ACNFs are a good alternative catalyst to Pt for MFCs.  相似文献   

18.
In this study, a simple hydrothermal method was used to prepare the cathode catalyst of microbial fuel cells (MFCs). The three-dimensional structure of ZIF-67 attached to the lamellar Ti3AlC2/ZnAl-layered double hydroxide (LDH) was observed. (010), (012), (015) were the obvious peaks of the composite ZIF-67@Ti3AlC2/ZnAl-LDH. Ti, N, C, Al, O, F were relatively uniformly distributed on the surface of the composite material. The maximum voltage of ZIF-67@Ti3AlC2/ZnAl-LDH-MFC was 576 mV and the stabilization time was 8 d. The maximum power density of ZIF-67@Ti3AlC2/ZnAl-LDH-MFC was 587 mW/m2, which was 1.32 times of Ti3AlC2/ZnAl-LDH-MFC (446 mW/m2) and 2.69 times of Ti3AlC2-MFC (218 mW/m2). Ti3AlC2 with large interlayer spacing and high specific surface area were perfectly composited with multi-layer nanosheets of ZnAl-LDH, and ZIF-67 attached to the surface enhanced the reaction center and activity of the composite material, which promoted oxygen reduction reaction and improved MFC performances.  相似文献   

19.
The effect of cathode flow pulsation on the performance of a 10-cell proton-exchange membrane fuel cell is investigated. An acoustic woofer generates a pulsating flow, which is added to a unidirectional flow supplied from a compressed air tank. By adding the flow pulsation, the fuel cell power output and the limit current dramatically increase while the fuel cell efficiency slightly decreases. As the pulsation amplitude increases, the improvement in fuel cell performance is more pronounced. The performance enhancement shows no obvious dependency on a pulsation frequency change from 10 to 30 Hz. The cathode flow pulsation effect is more distinct at low cathode flow rates.  相似文献   

20.
Microbial fuel cells (MFCs), a promising future energy conversion technology, play a significant role in the area of sustainable and renewable energy. In air-cathode MFCs, the catalytic activity for oxygen reduction reaction (ORR) of cathode electrocatalyst is the key factor to the performance of MFCs. Development of efficient and economical ORR electrocatalysts is an important step for the wide application of MFCs. Herein, Co wrapped carbon nanotubes (CNTs) N-doped nanoporous carbon materials (Co@NC-CoxZny) are constructed via a facile zinc-assisted growth pyrolytic approach of bimetallic zeolitic imidazole frameworks (BMZIFs)-derived strategy. They are directly prepared via carbonization of the precursor CoxZny-BMZIFs. During the pyrolysis process, the evaporation of zinc plays critical role in the in-situ growth of CNTs. For instance, the optimal catalyst, Co@NC-Co1Zn3, exhibits excellent ORR performance activity and stability with on-set potential (Eon-set) of 0.830 V (vs. RHE) and diffusion-limited current density (jL) of 6.706 mA cm?2, which is superior to the benchmark catalyst of commercial 20 wt% Pt/C. Additionally, Co@NC-Co1Zn3 displays four-electron pathway, long-term stability and better resistance to methanol tolerance. The MFC with Co@NC-Co1Zn3 cathode shows a maximum power density of 1039 mW m?2, and outperforms the MFC with commercial 20 wt% Pt/C catalyst (678 mW m?2). This work paved the way for exploring cost-effective, superior performance non-precious metal-based catalysts for air-cathode MFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号