首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The feasibility of achieving both universal application of nonthoracotomy leads and low (< or = 15 J) defibrillation energy requirements by optimizing lead system configuration for use with low-output (<30 J) biphasic shock pulse generators was examined. Sixteen patients (mean age 62 +/- 8 years and mean left ventricular ejection fraction of 38 +/- 15%) were included in the study. All patients had either experienced syncope with induced ventricular tachycardia (n = 4) or had documented sustained ventricular tachycardia (n = 7) or ventricular fibrillation (n = 5). Defibrillation threshold testing was performed in 2 stages on different days in these patients. In the first stage, 2 defibrillation catheter electrodes were positioned in the right ventricle and superior vena cava with an axillary cutaneous patch. Fifteen-joule, 10- and 5-J biphasic shocks were delivered across 3 different electrode configurations-right ventricle to superior vena cava, right ventricle to axillary patch, right ventricle to a combination of superior vena cava and axillary patch. In the second stage, an 80-ml can electrode was added subcutaneously in a pectoral location to the previous leads. Configurations compared were the right ventricle to pectoral can, and right ventricle to an "array"-combining superior vena cava, can, and axillary patch leads. The defibrillation threshold was determined using a step-down method. In stage 1, mean defibrillation threshold for the right ventricle to axillary patch (12.7 +/- 5.9 J) and right ventricle to superior vena cava plus axillary patch (9.8 +/- 5.2 J) configurations was lower than the right ventricle to superior vena cava configuration (14.2 +/- 6.4 J, p <0.05). In stage 2, the defibrillation was higher for the right ventricle to pectoral can (9.2 +/- 5.1 J) configuration compared with the right ventricle to the array (5.6 +/- 3.6 J, p < or =0.05). The right ventricle to array had the lowest defibrillation threshold, whereas the right ventricle to pectoral can was the best dual electrode system. Low-energy endocardial defibrillation (< or =10 J) was feasible in 72% of tested patients with > 1 electrode configuration at 10 J, whereas only 53% of successful patients could be reverted at >1 electrode configuration at 5 J (p <0.05). Reduction in maximum pulse generator output to < or =25 J using these electrode configurations with bidirectional shocks is feasible and maintains an adequate safety margin.  相似文献   

2.
We hypothesized that the right latissimus dorsi cardiomyoplasty augments left ventricular performance. Five dogs underwent staged right latissimus dorsi cardiomyoplasty. Ventricular function was studied 1 to 3 weeks later. Left ventricular pressure was measured with a micromanometer and left ventricular dimensions with piezoelectric crystals. Inferior vena caval occlusion was used to vary preload. Pressure-volume data were collected with the muscle unstimulated and stimulated at 1:2 and 1:1 muscle/heart ratios. The end-systolic pressure-volume relation (mm Hg/mL), stroke work, preload recruitable stroke work, left ventricular end-diastolic volume, and the diastolic relaxation constant were calculated and expressed as mean +/- standard deviation. Stimulated beats at a 1:2 ratio showed an increase in stroke work of 42.1% (978 +/- 381 to 1,390 +/- 449 g.cm; p < 0.01) and preload recruitable stroke work of 28.8% (59.4 +/- 20.7 to 76.6 +/- 11.0 g.cm/cm3; p = 0.05) compared with the unstimulated beats. With the stimulator on at 1:1, smaller changes occurred: stroke work increased 9% (1,167 +/- 390 to 1,273 +/- 363 g.cm; not significant) and preload recruitable stroke work increased 27% (63.9 +/- 22.7 to 80.9 +/- 23.1 g.cm/cm3; p = 0.05). There were no significant changes in the end-systolic pressure-volume relation. The diastolic relaxation constant did not change at 1:1 (36 +/- 9.7 to 37 +/- 6.4 ms; not significant) or 1:2 (36 +/- 9.3 to 39 +/- 8.2 ms; not significant). Left ventricular end-diastolic volume was unchanged at 1:1 (34 +/- 10.7 to 32 +/- 10.3 mL) and at 1:2 (31 +/- 9.0 to 32 +/- 8.7 mL).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Dynamic cardiomyoplasty (DCM) involves the electrical stimulation of a pedicled latissimus dorsi muscle flap wrapped around the falling ventricle as a means of cardiac assist. To further elucidate a potential neurohumoral mechanism for improvement of cardiac output after myoplasty, we evaluated the hemodynamic effects of in situ stimulation of the latissimus dorsi muscle (in the absence of cardiomyoplasty). In seven mongrel dogs, a nerve cuff electrode (Medtronic 6901) was placed around the left thoracodorsal nerve (TDN). This was attached to a pulse generator (Medtronic, Itrel 7420), delivering a 4.0 volt, 0.19 second on, 0.81 second off, 33 Hz, 210 microsecond pulse width, cyclic bursts similar to that used in DCM. Stroke volume index (SVI) and other hemodynamic parameters as well as plasma norepinephrine (NE) levels were measured at five stages: baseline, stimulator on at 0, 2, and 5 minutes, and stimulator off at 30 minutes after. The animals were then subjected to 4 weeks of rapid pacing at 240 beats/min (Medtronic 8329) to induce heart failure, and as the rapid pacing was discontinued, measurements were repeated as above. After rapid pacing, cardiac function was significantly depressed, and NE was elevated (133 +/- 69 versus 500 +/- 353 pg/mL, p < 0.05). In the normal hearts, TDN stimulation increased SVI, heart rate, systemic pressure, and NE levels. In heart failure, however, no significant changes in cardiac function and NE levels were noted. In conclusion, our data indicate that in the normal hearts, afferent impulses from TDN stimulation alone may augment cardiac function by means of a neurohumoral effect that is not seen in severe heart failure. The implications of these findings in DCM are discussed.  相似文献   

4.
BD Mott  JH Oh  Y Misawa  J Helou  V Badhwar  D Francischelli  RC Chiu 《Canadian Metallurgical Quarterly》1998,65(4):1039-44; discussion 1044-5
BACKGROUND: The apparent paradox seen in patients who have undergone dynamic cardiomyoplasty and shown substantial clinical and functional improvements with only modest hemodynamic changes may be due to inappropriate end points chosen for study, a result of incomplete understanding of mechanisms involved. The purpose of this study was to compare the relative role of the passive "girdling effect" and the dynamic "systolic squeezing effect" of the wrapped muscle in cardiomyoplasty. METHODS: The control group of 6 dogs underwent 4 weeks of rapid pacing (250 beats/min) to induce severe heart failure followed by 8 weeks of observation without rapid pacing. The trajectory of recovery in hemodynamics and cardiac dimensions was followed with echocardiography and Swan-Ganz catheters. In the "adynamic" cardiomyoplasty group (n=4), the left latissimus dorsi muscle was wrapped around the ventricles and allowed to stabilize and mature for 4 weeks. This was followed by rapid pacing and recovery as in the control group. In the "dynamic" cardiomyoplasty group (n=3), the same protocol for the adynamic group was followed except that a synchronizable cardiomyostimulator was attached to the thoracodorsal nerve of the muscle wrap. This allowed the latter to be transformed during the rapid-pacing phase and permitted dynamic squeezing of the muscle wrap to be generated by burst stimulation synchronized with cardiac contraction in a 1:2 ratio. RESULTS: Baseline data were comparable in all groups prior to rapid pacing. After 4 weeks of rapid pacing, the left ventricular ejection fraction was higher in the adynamic (27.0%+/-3.9%; p < 0.05) and dynamic (33.3%+/-2.3%; p < 0.02) cardiomyoplasty groups compared with controls (18.8%+/-8.3%). Similarly, ventricular dilatation in both systole and diastole was less in the adynamic (51.8+/-8.7 mL, [p < 0.002] and 38.2+/-7.2 mL [p < 0.001], respectively) and dynamic (62.0+/-7.2 [p < 0.02] and 41.3+/-3.5 mL [p < 0.005], respectively) cardiomyoplasty groups compared with controls. In the dynamic group, on and off studies were carried out after cessation of rapid pacing while the heart was still in severe failure, and they demonstrated a systolic squeezing effect in stimulated beats. Only this group recovered fully to baseline after 8 weeks. CONCLUSIONS: By reducing myocardial stress, both the passive girdling effect and the dynamic systolic squeezing effect have complementary roles in the mechanisms of dynamic cardiomyoplasty.  相似文献   

5.
JM You  RW Landymore  J Fris 《Canadian Metallurgical Quarterly》1997,64(2):404-8; discussion 408-9
BACKGROUND: The latissimus dorsi is usually left unstimulated for 2 weeks after cardiomyoplasty to allow the muscle to recover from the loss of the collateral circulation. To determine whether the 2-week delay may cause muscle atrophy, we randomized 15 mongrel dogs to a control group or a disuse atrophy group. METHODS: The collateral circulation to the latissimus dorsi was ligated in all animals before cardiomyoplasty to reduce the risk of ischemic injury to the muscle during mobilization. Two weeks after collateral ligation, the atrophy group had the tendinous attachment of the latissimus dorsi severed and then 2 weeks later underwent cardiomyoplasty. The control group had a 2-week delay after collateral ligation followed by cardiomyoplasty. Biopsies were performed before collateral ligation and before cardiomyoplasty. After heart failure was induced, hemodynamic function was assessed during synchronized contraction of the latissimus dorsi by measuring the maximum systolic elastance, stroke volume, preload recruitable stroke work index, and diastolic compliance. RESULTS: Comparison of muscle morphology between the two groups demonstrated the presence of muscle atrophy in those animals that had been randomized to the atrophy protocol. During synchronized contraction of the latissimus dorsi, there was no significant increase in maximum systolic elastance in either group. However, both stroke volume and pulmonary recruitable stroke work index were significantly higher in the control animals during assisted beats. The left ventricle was less compliant in the atrophy group, suggesting that muscle atrophy had adversely affected diastolic function. CONCLUSIONS: Delayed electrical stimulation of the latissimus dorsi may result in atrophy and loss of function.  相似文献   

6.
Unilateral hypoplasia of the breast and the pectoralis muscle with a missing anterior axillary fold as part of Poland's syndrome are of major concern, especially for women. The latissimus dorsi is one of the most suitable flaps for breast and anterior thorax reconstructions but it may be hypoplastic or absent. If so, a free tissue transfer of the contralateral latissimus dorsi muscle is the next possible option for reconstruction. As Poland's syndrome is additionally associated with vascular malformations of the diseased hemithorax such as hypoplastic or missing vessels, a preoperative angiography is mandatory for planned microvascular tissue transfer.  相似文献   

7.
BACKGROUND: We hypothesize that the integrity of the latissimus dorsi muscle graft used to wrap the heart may affect the clinical outcome of patients undergoing dynamic cardiomyoplasty. METHODS: By correlating the pathologic findings with their clinical course in five patients who died 1 month to 6 years after dynamic cardiomyoplasty operation, we sought to discern findings that might shed light on the pathophysiology of cardiomyoplasty. RESULTS: Of the two patients who had a limited clinical response, one had an atrophic, edematous latissimus dorsi muscle with fatty infiltration resulting from cardiac cachexia, and the other had insufficient length of latissimus dorsi muscle to cover a large heart. The remaining patients responded well clinically without signs of pump failure and died at various intervals, mostly of arrhythmias. Autopsy findings included the following: (1) one patient with ischemic cardiomyopathy as the underlying disease had development of rich vascularity in the interface between the muscle wrap and the epicardium; whereas in four others with idiopathic cardiomyopathy, such evidence of collateralization was far less evident. (2) There was a variation in the skeletal muscle transformation achieved, with the fraction type I fatigue-resistant fiber in the muscle wrap ranging from 60% to 100%, in spite of the identical transformation protocol used. Such variation is believed to be genetically based. (3) In one patient, the skeletal muscle was paced to contract at 30 to 50 times/minute (2:1 ratio) for more than 5 years. Nevertheless, the pathologic specimen of the muscle wrap showed only minimal interstitial fibrosis. (4) Relatively thin muscle wrap around the heart found at autopsy could be atrophy but most likely was related to muscle transformation, which is known to reduce muscle mass and increase capillary density. (5) All skeletal muscle grafts showed geometric conformation to the shape of the epicardium and grossly looked as if they were an additional layer of the ventricular wall. Such conformation may facilitate the modulation of the ventricular remodelling process in the failing heart, as has been described both in clinical and experimental studies. CONCLUSIONS: Our findings are consistent with and support a number of mechanisms proposed for cardiomyoplasty. Thus preservation of latissimus dorsi muscle graft integrity may be important in the success of dynamic cardiomyoplasty.  相似文献   

8.
OBJECTIVE: The purpose of this study is to evaluate the long-term outcome of dynamic cardiomyoplasty. This surgical technique was conceived to assist the failing heart. The many proposed mechanisms of action of cardiomyoplasty are: (1) systolic assist; (2) limitation of ventricular dilation; (3) reduction of ventricular wall stress (sparing effect); (4) ventricular remodeling with an active girdling effect; (5) angiogenesis; and (6) a neurohumoral effect. METHODS: We investigated 95 patients in our hospital undergoing this procedure due to severe chronic heart failure, refractory to optimal medical treatment. Patients had a mean age of 51 +/- 12 years. The etiology of heart failure was ischemic 55%, idiopathic 34%, ventricular tumor 6%, and other 5%. The mean follow-up was 44 months. RESULTS: The mean New York Heart Association (NYHA) functional class improved postoperatively from 3.2 to 1.8. Average radioisotopic left ventricular (LV) ejection fraction increased from 17 +/- 5 to 27 +/- 4% (P < 0.05). Stroke volume index increased from 32 +/- 7 to 43 +/- 8 ml/beat per m2 (P < 0.05). The heart size remained stable over the long term. Following cardiomyoplasty, the number of hospitalizations due to congestive heart failure was reduced to 0.4 hospitalizations/patient per year (preoperative: 2.5, P < 0.05). Computed tomography scans showed at long term a preserved latissimus dorsi muscle structure in 84% of patients. Survival probability at 7 years is 54%. Six patients underwent heart transplant after cardiomyoplasty (mean delay: 25 months), due to the natural evolution of their underlying heart disease. There were no specific technical difficulties. CONCLUSIONS: Clinically, this procedure reverses heart failure, improves functional class and ameliorates quality of life. The latissimus dorsi muscle histological structure is maintained at long-term, when postoperative electrostimulation is performed, avoiding excessive stimulation. Cardiomyoplasty may delay or prevent the progression of heart failure and the indication of cardiac transplantation.  相似文献   

9.
Dynamic cardiomyoplasty, a method to support ventricular function by the chronically stimulated latissimus dorsi muscle wrapped around the heart is accompanied by a loss of mass and force of the transplanted muscle. These effects and the fast-to-slow transformation of the muscle could be possibly influenced by the additional administration of anabolic steroids. In this study, the left latissimus dorsi muscles of 12 sheep were electrically conditioned (group A). In 12 other animals (group B), stimulation was combined with the administration of metenolone (100 mg/week). Biopsies were taken from the right and left muscles at the beginning and after 6 and 12 weeks of treatment, frozen and cross-sectioned. The muscle fibre type composition was studied enzymhistochemically (SDH-staining and Myosin-ATPase-reaction) and immunocytochemically (using antibodies against different myosin heavy chains, MHC). Furthermore, the expression of different MHC isoforms was investigated electrophoretically. The untreated latissimus dorsi muscle contains 20% type I fibres expressing slow MHC and 80% type II fibres expressing fast MHC. After 6 weeks, the respective fibre type composition was 42 and 58% (group A) and 80 and 20% (group B). After 12 weeks, the percentage of the type I fibres rose in group A to 59% and in group B to 98%. In accordance with these morphological results, the MHC pattern determined electrophoretically showed a corresponding shift from the fast to the slow isoform. Therefore, the administration of metenolone avoids severe muscle atrophy, and improves and accelerates fast to slow fibre type conversion necessary for successful cardiomyoplasty.  相似文献   

10.
The authors investigated what contractile force (CF) could be obtained from unconditioned latissimus dorsi muscle immediately after mobilization and for the 2 week vascular period of recovery. Latissimus dorsi muscle mobilization was performed on seven adult (4 experimental and 3 control) sheep leaving only the pedicle and the peripheral muscle intact. Telectronics stimulators (Myostim 7220; Teletronics Pacing Systems, Inc, Englewood, CO) were implanted. Immediately after mobilization 11-35% of the initial CF was lost. A 30 min fatigue test was performed 1 hr after mobilization (20 g/kg preload, 10 V, 10 Hz, 15 BPM, 6 impulses per burst) using a 1 min work-1 min rest regimen. Two sheep lost 2-12% of initial CF; two increased CF by 14-24%. At the end of the fatigue test, CF consisted of 74-89% of immobilized CF. Electrical stimulation training of the muscle was then initiated with the following regimen in the experimental animals only: 15 BPM, single impulses, 5 V, 10 Hz. Every day the muscle was exercised using a work-rest regimen to mimic cardiac assist, starting with 20 min on day 2, and increasing by 2 min per day until a total of 50 min was reached on day 16. All animals were retested for CF using a 42 min fatigue test on days 6, 11, and 16. On day 6, there was no fatigue evident in the experimental group during the 42 min test. CF after testing was 59-81% (mean 67%) of initial data. In the control group (animals with no electrical stimulation training protocol), CF decreased by 11% (from 64 to 53%). On day 11, there was no fatigue evident in the experimental group; CF in all animals increased by 2-8%. On day 16, there was also no fatigue evident in the experimental group; CF increased by 0-9%. An additional 20 min of continuous contraction (15 BPM) fatigue testing was performed on the muscle without rest between the tests. No fatigue was evident at the end of testing. Light microscopic analysis of latissimus dorsi muscle biopsy specimens taken on the days of testing showed no evidence of necrotic damage. Our investigations suggest that it may be possible to start muscle transformation immediately after mobilization and use the untrained latissimus dorsi muscle for cardiac assist immediately after surgery for short periods.  相似文献   

11.
The objective of the present project was to investigate the efficacy and mechanism of acute (10-minute) adenosine treatment for augmentation of ischemic tolerance in muscle flaps in pigs. Varying doses of adenosine were infused into 28 latissimus dorsi muscle flaps through the axillary artery (0, 0.5, or 2.0 mg per flap) and 22 gracilis muscle flaps through the medial circumflex femoral artery (0, 10, or 20 mg per flap) over 10 minutes. Ten minutes after adenosine infusion, these muscle flaps were subjected to 4 hours of sustained warm global ischemia. In addition, one group of latissimus dorsi muscle flaps (n = 6) received a 10-minute intraarterial adenosine infusion (0.5 mg) at the beginning of reperfusion. Muscle biopsies (n = 4 or 5) for adenosine triphosphate (ATP) analysis were obtained before and after adenosine infusion and at the end of 4 hours of ischemia. The extent of muscle infarction was assessed at 48 hours of reperfusion by the tetrazolium dye staining technique. Muscle blood flow in latissimus dorsi muscle flaps was measured at the end of adenosine infusion (0 or 0.5 mg per flap, n = 8) by the radioactive microsphere (15-microns) technique. It was observed that adenosine, at all doses tested, significantly (p < 0.05) reduced the extent of muscle infarction in latissimus dorsi muscle flaps (control, 40.3 +/- 2.2 percent; 0.5 mg, 20.6 +/- 1.6 percent; 2.0 mg, 18.2 +/- 1 percent) and gracilis muscle flaps (control, 31.0 +/- 1.5 percent; 10 mg, 14.3 +/- 3 percent; 20 mg, 11.6 +/- 1.2 percent). Preischemic adenosine treatment (0.5 mg per flap) was associated with maintenance of a significantly (p < 0.05) higher muscle content of ATP in latissimus dorsi muscle flaps at the end of 4 hours of ischemia compared with saline-treated ischemic controls. Postischemic adenosine treatment did not protect latissimus dorsi muscle flaps against infarction. Furthermore, adenosine treatment did not have any significant effect on mean systemic arterial blood pressure or muscle blood flow in latissimus dorsi muscle flaps. It is concluded that acute (10-minute) preischemic adenosine treatment is effective in augmentation of ischemic tolerance in muscle flaps and that this protective effect of adenosine may be, at least in part, the result of slowing muscle ATP depletion during sustained ischemia. The possible mechanisms of this adenosine-induced energysparing effect are discussed.  相似文献   

12.
The purpose of this study was to investigate the common belief that a microvascular transfer of a non-innervated free muscle flap loses muscle bulk over time. Sixteen patients (latissimus dorsi = 8, rectus abdominis = 7, and gracilis muscle = 1) were evaluated an average of 41 months after free flap transfer. Latissimus dorsi and lower extremity flaps displayed significantly more swelling than the other flaps. Flap bulk was measured by ultrasound. The mean thickness of upper extremity flaps was 10.3 +/- 1.8 mm (control muscles 11.8 +/- 2.8), lower-extremity 14.5 +/- 3.7 mm (control muscles 10.9 +/- 0.7), latissimus dorsi 14.3 +/- 2.2 mm (control muscles 10.3 +/- 0.8, P = 0.018), and rectus abdominis 11.2 +/- 1.2 mm (control muscles 12.4 +/- 1.9). Color Doppler ultrasonography was used to detect the pedicles of the free flaps and also to measure the peak velocity of blood flow intramuscularly and in the pedicles. In the upper extremities (n = 5) the pedicles could be found in only 20% of cases whereas in the lower extremities (n = 11) 91% of pedicles were located. (P = 0.013). Peak flow within the free flaps was significantly higher in the lower extremity (50% of the peak flow of the common femoral artery) than in the upper extremity (5% of the peak flow of the common femoral artery, P = 0.013). This study demonstrated that non-innervated free muscle flaps in the extremities maintain the original muscle thickness, although lower extremity and latissimus dorsi flaps have a trend to be thicker. Most pedicles of free muscle flaps in the upper extremities could not be located by ultrasound. However, flaps in the lower extremities most often have patent pedicles and also more vigorous intramuscular blood flow.  相似文献   

13.
BACKGROUND: Severe latissimus dorsi muscle damage may compromise cardiomyoplasty performance. We analyzed factors underlying the damage produced in 20 sheep latissimus dorsi muscles by isolating the influences of electrical stimulation, mobilization (with some loss of vascular supply), loss of normal resting tension, or a combination of these. METHODS: In group I (n = 3), the muscle was mobilized except for its neurovascular pedicle and reattached at normal resting length. In group II (n = 3), the muscle was mobilized and reattached at about 80% of resting length. Groups III (n = 6) and IV (n = 4) were as groups I and II except that continuous indirect stimulation at 2 Hz was added after 2 weeks. In group V (n = 4), the undisturbed muscle received stimulation alone. After 10 to 12 weeks, muscle samples were taken for morphometric analysis. RESULTS: Loss of resting muscle tension appeared to be the single most damaging intervention, though mobilization and stimulation had further deleterious effects. The worst damage was seen when all three factors were combined, when 60% of the muscle cross section was occupied by connective tissue and fat. The changes were significantly more severe in the distal than in the proximal part of the muscle, implicating ischemia as a contributory factor. CONCLUSIONS: Fiber damage reduces the effectiveness of muscle grafts used for cardiac assistance and merits further systematic investigation.  相似文献   

14.
Ischemic preconditioning of the myocardium with repeated brief periods of ischemia and reperfusion prior to prolonged ischemia significantly reduces subsequent myocardial infarction. Following ischemic preconditioning, two "windows of opportunity" (early and late) exist, during which time prolonged ischemia can occur with reduced infarction size. The early window occurs at approximately 4 hours and the late window at 24 hours following ischemic preconditioning of the myocardium. We investigated if ischemic preconditioning of skeletal muscle prior to flap creation improved subsequent flap survival and perfusion immediately or 24 hours following ischemic preconditioning. Currently, no data exist on the utilization of ischemic preconditioning in this fashion. The animal model used was the latissimus dorsi muscle of adult male Sprague-Dawley rats. Animals were assigned to three groups, and the right or left latissimus dorsi muscle was chosen randomly in each animal. Group 1 (n = 12) was the control group, in which the entire latissimus dorsi muscle was elevated acutely without ischemic preconditioning. Group 2 (n = 8) investigated the effects of ischemic preconditioning in the early window. In this group, the latissimus dorsi muscle was elevated immediately following preconditioning. Group 3 (n = 8) investigated the effects of ischemic preconditioning in the late window, with elevation of the latissimus dorsi muscle 24 hours following ischemic preconditioning. The preconditioning regimen used in groups 2 and 3 was two 30-minute episodes of normothermic global ischemia with intervening 10-minute episodes of reperfusion. Latissimus dorsi muscle ischemia was created by occlusion of the thoracodorsal artery and vein and the intercostal perforators, after isolation of the muscle on these vessels. Muscle perfusion was assessed by a laser-Doppler perfusion imager. One week after flap elevation, muscle necrosis was quantified in all groups by means of computer-assisted digital planimetry. Our results show that ischemic preconditioning resulted in a significant reduction (p < 0.05) in muscle-flap necrosis immediately and 24 hours following ischemic preconditioning. Perfusion changes after flap elevation were similar among the three groups. Ischemic preconditioning of skeletal muscle prior to flap creation significantly reduces subsequent muscle-flap necrosis caused by the ischemia of flap creation immediately and 24 hours following ischemic preconditioning. Further elaboration of the mechanisms of ischemic preconditioning may allow pharmacologic preconditioning to be used in the augmentation of skeletal muscle-flap survival in the clinical setting.  相似文献   

15.
OBJECTIVES: The aim of this study was to clarify how myocardial perfusion is impaired by asynchronous contraction. BACKGROUND: False septal hypoperfusion is noted in some patients with left bundle branch block. METHODS: Eight dogs were examined with epicardial pacing at the left ventricular posterior wall, the right ventricular anterior wall and, as a control, the right atrial appendage. The pacing rate was 80, 110 and 150 beats/min (bpm). Myocardial perfusion was assessed by contrast echocardiography. RESULTS: Left ventricular pacing at 80 and 110 bpm did not change systolic wall thickening or contrast intensity at the pacing site, although an early excitation notch was noted at the pacing site. However, at 150 bpm, systolic thickening was impaired (23.3 +/- 4.2% vs. 37.0 +/- 2.6% during atrial pacing, p < 0.05), and the peak intensity ratio of the pacing site to the ventricular septum was significantly decreased (24.1 +/- 5.7% vs. 37.0 +/- 2.8% at a pacing rate of 80 bpm, p < 0.01). The peak intensity ratio correlated with systolic wall thickening at the pacing site (y = 0.413 x -0.028, r = 0.81, p < 0.0001). However, right ventricular pacing did not change either systolic thickening or the peak intensity ratio at any pacing rate, although an early excitation notch was noted on the ventricular septum. CONCLUSIONS: Wall motion abnormalities after early excitation vary depending on the pacing mode. When tachycardia induces regional wall motion abnormalities, the ventricular wall of the pacing site is functionally hypoperfused.  相似文献   

16.
To assess optimal hemodynamics in relation to stimulation site during right ventricular pacing, 17 consecutive patients who underwent cardiac catheterization were studied. In all patients, right ventricular apex and right ventricular outflow tract stimulation was performed at 85, 100, and 120 beats/min. Cardiac index at both pacing sites was compared using the left ventricular outflow tract continuous wave Doppler technique. Comparison of the two stimulation sites demonstrated that right ventricular outflow tract pacing resulted in a higher cardiac index at 85 beats/min (2.42 +/- 1.2 vs 2.04 +/- 1.0 L/min per m2, P < 0.002) at 100 beats/min (2.78 +/- 1.4 vs 2.35 +/- 1.1 L/min per m2, P < 0.001) and 120 beats/min (3.00 +/- 1.5 vs 2.61 +/- 0.9 L/min per m2, P < 0.001). From a total of 51 paired observations, 45 showed an increase in cardiac index during outflow tract pacing as compared to apex pacing. Right ventricular outflow tract pacing at 120 beats/min resulted in a lower cardiac index than right ventricular apex pacing in patients with significant coronary artery disease and/or impaired left ventricular function (ejection fraction < or = 50%), whereas right ventricular outflow tract pacing produced higher cardiac indices in the absence of these abnormalities. Right ventricular outflow tract pacing resulted in higher cardiac indices as compared to apex pacing in all other subgroups at all other pacing sites tested. It is concluded that stimulation of the right ventricular outflow tract offers a significant hemodynamic benefit during single chamber pacing as compared to conventional apex pacing, particularly in the absence of significant coronary artery disease and/or left ventricular dysfunction.  相似文献   

17.
OBJECTIVES: We investigated 1) the feasibility, safety and efficacy of multisite right atrial pacing for prevention of atrial fibrillation (AF); and 2) the ability of atrial pacing in single- and dual-site modes to increase arrhythmia-free intervals in patients with drug-refractory AF. BACKGROUND: We recently developed and applied a novel technique of dual-site right atrial pacing in an unselected group of consecutive patients with AF requiring demand pacing. A prospective crossover study design was used to evaluate single- and dual-site right atrial pacing modes. METHODS: The frequency of AF during the 3 months before pacemaker implantation was analyzed. Consecutive consenting patients underwent insertion of two atrial leads and one ventricular lead with a DDDR pulse generator. Patients were placed in a dual-site pacing mode for the first 3 months and subsequently mode switched to single site pacing for 3 months. Mode switching was repeated at 6-month intervals thereafter. RESULTS: Atrial pacing resulted in a marked decline in AF recurrences (p < 0.001). During dual-site pacing with an optimal drug regimen, there was no AF recurrence in any patient compared with five recurrences in 12 patients during single-site pacing (p = 0.03). The mean (+/-SD) arrhythmia-free interval before pacing (14 +/- 14 days) was prolonged with dual- (89 +/- 7 days, p < 0.0001) and single-site pacing (76 +/- 27 days, p < 0.0001). Symptomatic AF episodes showed a declining trend during dual- and single-site pacing compared with those during the preimplantation period (p = 0.10). Mean antiarrhythmic drug use for all classes declined from 4 +/- 1.9 drugs before implantation to 1.5 +/- 0.5 (p < 0.01) drugs after implantation. Twelve (80%) of 15 patients remained in atrial paced rhythm at 13 +/- 3 months. CONCLUSIONS: We conclude that multisite right atrial pacing is feasible, effective and safe for long-term application. Atrial pacing significantly prolongs arrhythmia-free intervals in patients with drug-refractory paroxysmal AF. Dual-site right atrial pacing may offer additional benefits and should be considered either as the primary mode or in patients unresponsive to single-site pacing.  相似文献   

18.
BACKGROUND: Cardiomyoplasty is a new surgical alternative therapy for CHF. Although conditioning of muscle for cardiomyoplasty has a positive effect on fatigue resistance it also produces negative effects. In this study we assessed the effect of salbutamol, a beta2-agonist, on both the positive and the negative effects of conditioning. METHODS: In a control group of six animals one latissimus dorsi was subject to chronic, 1 Hz, low-frequency stimulation (CLFS) while the other served as a control. The experimental group of seven dogs received a continuous SC infusion of salbutamol and one latissimus dorsi was subjected to CLFS. The other muscle demonstrated the effects of salbutamol per se. After 42 days the animals were anesthetized and fatigue resistance, muscle mass, and mechanical properties of the muscles were evaluated. RESULTS: Salbutamol increased muscle mass, tetanic tension, and rate of rise and fall of tetanic tension. It diminished fatigue resistance and had no effect on shortening velocity. Chronic stimulation decreased muscle mass, tetanic tension, rate of rise and fall of tetanic tension, and muscle shortening velocity in both groups of dogs. Salbutamol diminished the declines in muscle mass, rate of tension development, and rate of muscle shortening due to CLFS, but did not change the effects of CLFS on tetanic tension and the rate of fall of tetanic tension. Salbutamol did not alter the increase in fatigue resistance induced by CLFS. CONCLUSIONS: The favorable effect of CLFS on fatigue resistance was unaffected by salbutamol. The unfavorable effects of CLFS on loss of muscle mass, rate of tension development, and decline in shortening velocity were partially blocked by salbutamol, improving the ability of the latissimus dorsi to augment cardiac systole.  相似文献   

19.
BACKGROUND: Optimal synchronization delay (SD) for triggering the implanted cardiomyostimulators in patients undergoing latissimus dorsi dynamic cardiomyoplasty has not been clearly defined. Generally a synchronization delay time of 45 to 60 ms is used in the current practice, in which the implanted cardiomyostimulator stimulates the latissimus dorsi muscle 45 to 60 ms after mitral valve closure acquired with M-mode echocardiography. We investigated the effect of shortening or prolonging the delay time on cardiac functions. METHODS: We studied 10 patients who were in their first 2 years postoperatively. Three values for SD (SD = 0 ms, 45 to 60 ms, and 150 to 160 ms) were echocardiographically evaluated for their influence on both systolic and diastolic left ventricular parameters. RESULTS: Ejection fractions were 0.27 +/- 0.07, 0.28 +/- 0.07, and 0.32 +/- 0.06; peak aortic velocities were 0.85 +/- 0.8, 0.86 +/- 0.11, and 0.92 +/- 0.8 m/s; and velocity-time integrals were 0.16 +/- 0.03, 0.16 +/- 0.03, and 0.19 +/- 0.03 m for the SD values of 0, 45 to 60 ms, and 150 to 160 ms, respectively. Diastolic parameters were also measured. Isovolumetric diastolic relaxation time was 97.5 +/- 49, 97.20 +/- 44, and 111.8 +/- 49 ms; deceleration time was 83.67 +/- 32, 88.48 +/- 35, and 92.68 +/- 34 ms; and ratio or velocity-time integral of e wave to velocity-time integral of a wave was 3.09 +/- 0.98, 2.48 +/- 0.69, and 2.38 +/- 0.65 for the SD values of 0, 45 to 60 ms, and 150 to 160 ms, respectively. Systolic functions were better when SD was set at 150 to 160 ms, but there was a diastolic compromise. On the other hand, diastolic parameters were more favorable when SD = 0 (i.e., cardiomyostimulator triggered without delay) but the systolic assist was suboptimal. Systolic and diastolic parameters seemed relatively well-balanced with the current practice of setting the synchronization delay at 45 to 60 ms. CONCLUSIONS: The most favorable systolic effects were obtained with a prolonged delay of synchronization (150 to 160 ms), at some expense of diastolic functions. On the other hand, with a short or absent delay, diastolic parameters were improved but systolic parameters became suboptimal. Therefore, the current practice of setting the SD between 45 and 60 ms after echocardiographic mitral valve closure is suggested for the optimal timing for cardiomyostimulator stimulation in patients who have undergone latissimus dorsi dynamic cardiomyoplasty. Yet a great deal of individualization is necessary, and fixed preset values cannot definitely be determined because one setting does not fit all patients.  相似文献   

20.
OBJECTIVE: We tested the hypothesis that right heart failure during endotoxin shock may result from altered ventriculovascular coupling responsible for impeding power transfer to the pulmonary circulation. METHODS: The changes in vascular pulmonary input impedance and right ventricular contractility produced by low-dose endotoxin infusion were studied in 6 intact anesthetized dogs. RESULTS: Endotoxin insult resulted in pulmonary hypertension (from 22 +/- 2 to 33 +/- 3 mmHg) associated with significant decreases in stroke volume (from 26.9 +/- 4 to 20.2 +/- 3 ml) and right ventricular ejection fraction (from 41 +/- 3 to 32 +/- 2%). The first minimum of input impedance spectrum and zero phase were shifted towards higher frequencies. Input resistance and characteristic resistance were dramatically increased. The latter change contributed to a significant increase in the pulsatile component of total right ventricular power output from 13 to 21%, indicating a reduction in the hydraulic right ventricle power output delivered into the main pulmonary artery. Overall changes in input pulmonary impedance were indicative of increased afterload facing the right ventricle leading to depressed performance. In contrast, right ventricular systolic elastance was simultaneously increased from 0.56 to 0.93 mmHg/ml indicating an increase in right heart contractility. CONCLUSION: These data suggest that pulmonary hypertension in the setting of experimental endotoxin shock is accompanied by deleterious changes in the pulmonary impedance spectrum, which are responsible for a mismatch of increased contractile state of the right ventricle to the varying hydraulic load ultimately leading to ventricular-vascular uncoupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号