首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过X射线衍射、矿相显微镜和扫描电子显微镜等技术手段,对辽西某钒钛磁铁矿进行了工艺矿物学研究。结果表明:矿石中磁铁矿含量很少,铁矿物主要为假象赤铁矿,钛铁矿是主要的钛矿物,脉石矿物以长石和辉石为主;矿石中大部分钒钛磁铁矿发生了假象赤铁矿化而导致其磁性变弱;钒钛磁铁矿晶格中普遍存在以类质同象的形式存在的Ti O2等成分,且部分钒钛磁铁矿发生了不同程度的榍石化,可能使铁精矿具有"高钛低铁"的特点。根据工艺矿物学特点,该矿石宜在精选作业前先采用重选、磁选等高效、低成本的工艺进行预处理,以减小矿石的处理量;该矿的铁精矿宜采用非高炉法进行冶炼。  相似文献   

2.
针对某风化型钒钛铁矿中铁矿物与钛矿物嵌布关系十分密切、密度和比磁化系数接近、选矿难以分离的特点, 采用选冶联合工艺进行了回收试验研究。结果表明, 利用磁选实现了钒钛铁矿物的预先富集, 对钒钛铁粗精矿进行闪速磁化焙烧拉大了铁矿物与钛矿物的比磁化系数差距, 为选矿分离创造了条件。选冶联合工艺全流程试验取得了TFe品位61.06%、V2O5含量1.03%, TFe和V2O5回收率分别为73.12%和76.43%的含钒铁精矿和TiO2品位50.96%、回收率40.40%的钛精矿。该工艺实现了钒、钛、铁的综合回收。  相似文献   

3.
孔德翠  刘杰  张淑敏  李艳军 《矿产综合利用》2022,43(5):131-135, 147
某铁矿石铁品位是56.36%,主要以赤褐铁矿的形式存在,脉石矿物主要是石英和铝土矿。对该铁矿石采用了悬浮磁化焙烧—磁选工艺实验研究,在给料粒度为-0.074 mm 56.11%,焙烧温度为560℃,总气量为500 mL/min、CO浓度为30%,还原时间为15 min的条件下进行焙烧实验,然后将焙烧产品磨至-0.074 mm 95%,在磁场强度90 kA/m,选别时间5 min的条件下进行弱磁选实验,获得了铁品位64.42%,铁回收率94.49%的高品位铁精矿,为处理难选铁矿石提供了解决办法。  相似文献   

4.
四川攀西地区某难选铁矿的工艺矿物学及选矿试验   总被引:4,自引:0,他引:4  
对攀西地区某难选铁矿进行了工艺矿物学研究及选矿试验,确定了选矿工艺流程。试验表明,采用焙烧磁选反浮选降磷的工艺可以得到铁品位为60.89%、含磷0.222%的合格铁精矿,且回收率可达到72.74%。  相似文献   

5.
刘福源 《现代矿业》2022,(9):144-147
为了推进陕西某低品位钒钛磁铁矿的开发利用,通过矿相显微镜、扫描电子显微镜、X射线能谱等多种分析手段,对矿样开展了详细的工艺矿物学特征研究。研究结果表明:矿石中的主要矿物在蚀变程度和有益元素分布方面存在差异,铁精矿理论品位为52.44%,钛精矿理论品位为47.83%,加强选钛试验研究是提升资源利用价值的重要方向,该研究结果为该钒钛磁铁矿资源的开发利用提供了基础参考依据。  相似文献   

6.
某复杂难选红铁矿磁化焙烧-磁选工艺及机理研究   总被引:3,自引:2,他引:1  
对某复杂难选红铁矿进行了磁化焙烧-磁选工艺研究。试验结果表明, 在焙烧温度为950 ℃, 焙烧时间为15 min, 碳粉(0~1 mm)用量为15%, 磁场强度为0.16 T, 磨矿粒度-0.074 mm粒级占87%左右的条件下, 可获得Fe含量为63.06%、回收率为88.45%的铁精矿。磁化焙烧-磁选机理研究表明, 红铁矿经磁化焙烧后的产品呈疏松多孔结构, 有利于磨矿作业; 红铁矿在950 ℃下磁化焙烧15 min, 焙烧产品的物相仅为Fe3O4。  相似文献   

7.
湖北某难选鲕状赤铁矿还原焙烧-磁选试验   总被引:1,自引:0,他引:1  
简介了湖北某难选鲕状赤铁矿的工艺矿物学特征,对该矿石还原焙烧的合适温度、还原剂用量、焙烧时间以及磁选的合适场强进行了试验研究。研究表明,铁品位为47.57%的鲕状赤铁矿在焙烧温度为850 ℃、碳粉用量为25%、焙烧时间为60 min、冷淬后磨矿细度为-0.074 mm占85%、磁选场强为127.39 kA/m情况下,能获得铁品位为56.75%、回收率为79.96%的铁精矿产品。  相似文献   

8.
新疆某镜铁矿石含TFe 35%,P 0.021%,S 0.012%,矿石中部分镜铁矿以细粒和微细粒的状态与隐晶质细粒的碳酸盐混杂构成细粒隐晶质结构,属难选矿石。对其进行了实验室磁化焙烧弱磁选试验。结果表明,将-2 mm原矿与煤粉按100砄12质量比(煤配比100砄12)混合,在焙烧温度800℃,焙烧时间为75 min的条件下焙烧,焙烧后细磨至-0.074 mm占90%,在磁场强度均为120 kA/m条件下进行两段弱磁选,可获得铁精矿品位65.95%、回收率77.70%的技术指标。该工艺技术为我国镜铁矿的开发利用提供了参考。  相似文献   

9.
海南石碌铁矿石铁品位为40.21%,主要有害成分硫含量达1.32%,铁主要以赤铁矿的形式存在,分布率达73.56%。为确定该矿石的合理开发利用工艺进行了选矿试验。结果表明,采用预富集—磁化焙烧—弱磁选工艺处理试样,在磨矿细度为-0.074 mm占62.18%的条件下,采用1粗1精1扫、中矿顺序返回反浮选流程脱硫,1次中磁选+1次强磁选预富集,进入磁化焙烧—弱磁选工艺的矿量减少了16.50%,预富集精矿铁品位为45.61%、S含量为0.54%;预富集精矿在还原温度为520℃、还原剂浓度为30%、还原时间为20 min,弱磁选给矿细度为-0.038 mm占90%的情况下可获得铁品位为66.86%、回收率为92.27%的铁精矿,试验指标良好。  相似文献   

10.
胡芳  陈泽宗 《矿冶工程》2021,41(6):81-83
对铁品位42.36%的某微细粒难选铁矿尾矿进行了选矿工艺研究,制定了磁化焙烧-弱磁选的选矿工艺流程,并研究了配煤量、焙烧温度、焙烧时间和磨矿细度等试验条件对铁回收效果的影响。结果表明,在配煤量5%、焙烧温度800 ℃、焙烧时间30 min的适宜试验条件下焙烧,所得焙烧矿磨至-0.074 mm粒级占75.83%后,经一粗一精弱磁选(磁场强度均为96 kA/m),可获得铁品位56.84%、回收率73.74%的铁精矿。  相似文献   

11.
针对西北某铁矿矿物组成、嵌布关系复杂及嵌布粒度较细的特点,进行了选矿试验研究。试验结果表明:原矿在焙烧温度700℃、焙烧时间50 min条件下,进行中性焙烧后,再经磨矿-弱磁选-弱磁选尾矿强磁选流程处理后,可获得铁品位为66.85%、回收率为45.67%的弱磁选精矿和铁品位为62.80%、回收率为38.98%的强磁选精矿,综合精矿铁品位为64.92%、回收率为84.65%。  相似文献   

12.
为制定合理的铜钼矿选矿工艺流程和选矿指标,采用光学显微镜、化学多元素分析、物相分析等分析测试手段对秘鲁某矽卡岩型难选铜钼矿进行了系统的工艺矿物学研究。研究结果表明,矿石主要有用元素为Cu和Mo,品位分别为0.58%和0.019%。矿石矿物组成复杂,主要有用矿物为黄铜矿、辉铜矿、辉钼矿等,脉石矿物为石英、长石、云母、蛇纹石、透闪石、绿泥石等。铜钼矿物嵌布粒度细小,且常沿黄铁矿或磁铁矿或脉石矿物的边缘、孔洞及裂隙分布,少量微细粒黄铜矿呈稀疏浸染状分布在脉石矿物中,嵌布关系复杂,影响铜钼矿的选矿回收。  相似文献   

13.
以西藏铜铅锌混合矿为研究对象,采用化学多元素分析、物相分析及光学显微镜分析等手段对该矿石的化学组成、物相组成、矿物嵌布粒度特征等进行了详细研究。结果表明,该矿石矿物成分复杂,主要有价回收元素为铜、铅、锌,品位分别为0.67%、1.27%、0.99%;铜主要以硫化铜的形式存在,氧化铜分布率占30.30%;铅和锌主要以碳酸盐的形式存在;脉石矿物主要有方解石、石英、透闪石、石榴石等。矿物之间包裹嵌布复杂,紧密共生,矿石中铜铅、铜锌可浮性相近,是导致目的矿物浮选指标差的重要原因。基于工艺矿物学研究,建议采用"铜铅锌混合浮选—浮选尾矿强磁选—混合精矿浮选分离"的工艺流程来提高有用金属的品位和回收率。  相似文献   

14.
鞍山地区铁矿石工艺矿物学研究(二)   总被引:1,自引:0,他引:1  
按照有用矿物和脉石及各种矿物含量的比例对东鞍山铁矿矿石中矿物进行分类,其结果见表6。  相似文献   

15.
以兰坪金鼎矿区氧化铅锌矿为研究对象,采用化学分析、物相分析、X射线衍射分析、偏光显微镜分析等方式,查明矿石的结构构造、元素组成、矿物组成及含量、目的矿物的嵌布特征,目的矿物与其它矿物的共生关系,目的元素(铅、锌)的赋存状态。工艺矿物学研究结果表明,原矿中有用矿物为铅矿物和锌矿物,其中Pb品位为1.26%,Zn 品位为8.40%。矿石中铅主要赋存在白铅矿、方铅矿中;锌主要赋存在菱锌矿、异极矿及闪锌矿中;脉石矿物主要为方解石、石英、白云母、黄铁矿(白铁矿)等。铅锌矿物种类较多且与其它矿物的共生关系较为复杂,易泥化、易过粉碎的缺点将会严重影响铅锌品位和回收率指标。鉴于此,宜采用分段浮选,先选铅,脱泥后再选锌,该研究结果可以为兰坪氧化铅锌矿浮选工艺流程改造和合理开发利用氧化铅锌资源提供科学依据。  相似文献   

16.
摘要:介绍了嵩县南沟金矿的工艺矿物学研究和矿石可浸性试验的成果。通过化学分析、电子探针等分析手段查清了原矿化学物质组成、矿物物质组成、矿物相对含量金的赋存状态及嵌布粒度特征:该矿石属于凝灰质砂岩、粉砂岩型金矿;金多赋存于褐铁矿中,其次是赋存在毒砂及黄铁矿中,矿石石质疏松,裂隙发育。矿石中的金主要为自然金,金的成色高,绝大部分为可见金,而且主要呈裂隙金嵌布,主要载金矿物为氧化矿物,适于用氰化法处理。在原矿金的平均品位为2.39~4.14g/t时,可得到的尾渣平均品位0.31~0.26g/t,金的浸出率为87.03~93.72%的较好指标。   相似文献   

17.
对几类典型的钛铁矿及其预选工艺进行了论述。对攀枝花地区钛品位仅5.82%的原生钛铁矿, 采用以圆锥选矿机为主的重选预选工艺, 可抛尾72.96%, 将TiO2品位提高到13.76%, 经精选后, 可获得TiO2品位47.45%、回收率41.51%的精矿产品; 对陕西地区理论钛品位仅47.92%的复杂难选原生钛铁矿, 采用二段高梯度强磁选预选工艺, 通过阶段强磁选有效的减轻了浮选精选难度, 精选后可获得TiO2品位47.23%、回收率45.25%的精矿产品; 对云南地区含泥量大、钛铁矿钙镁含量高的钛铁砂矿, 采用磁选-重选联合预选工艺, 可直接获得钛品位48.46%、回收率45.89%的粗精矿产品, 也可作为最终的精矿产品。重选、磁选是绿色、环保的选矿方法, 其适宜的预选工艺能有效减轻浮选、冶金工艺的难度和减少由于浮选、冶金带来的环境影响, 最终实现钛铁矿资源绿色、高效开发利用的目的。  相似文献   

18.
云南怒江地区某难选铜铁矿有用矿物嵌布粒度细、铜品位低(仅0.54%)、氧化率高(达59.26%)、结合氧化铜含量高(占37.04%);原矿铁品位为49.87%,其中,弱磁性赤褐铁矿占99.35%,属于高氧化率、高结合率的复杂难选铜铁矿。针对该矿特点,对易浮硫化铜矿物进行了浮选研究,重点进行了调整剂、活化剂和捕收剂的种类及用量的研究;通过大量的调优试验,最终确定采用"浮选-强磁选"联合工艺流程,可获得铜精矿品位23.37%、回收率49.45%;铁精矿品位53.15%,回收率90.92%的技术指标,为该类铜铁矿资源开发利用提供了基础依据。  相似文献   

19.
本文以青海某低品位铁矿为研究对象,对其进行了详细的工艺矿物学研究,并根据原矿性质特点进行选矿试验研究。在原矿全铁含量为33.35%,磨矿细度-0.076mm占63.7%,磁场强度为1800GS条件下,采用一步磁选即可获得全铁含量为69.60%,回收率为88.63%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号