首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用超声-微波协同提取技术(UMAE)对菠萝蜜果皮中多酚的提取工艺进行优化,并对抗氧化活性进行了评价。以单因素实验为基础,根据Box-Behnken中心组合设计原理,选取乙醇体积分数、料液比、微波功率和微波时间4因素3水平进行响应曲面分析,建立多酚得率的二次多项数学模型,分析各因素的显著性和交互作用,得到多酚提取工艺的最佳条件为:乙醇体积分数70%、料液比1∶40、微波功率75 W、微波时间12 min,多酚得率为7.19 mg/g。在该条件下,超声-微波协同提取方法提取效率优于传统水浴回流法(1.04 mg/g)、微波辅助法(5.23 mg/g)和超声辅助法(5.89 mg/g)。抗氧化活性研究表明,菠萝蜜果皮多酚提取物对DPPH自由基和ABTS自由基均有较强的清除能力,呈量效关系,其EC50值分别为101.39μg/m L和106.60μg/m L,表明多酚是菠萝蜜果皮抗氧化活性的物质基础。   相似文献   

2.
采用响应面法优化拐枣枝多酚提取工艺,并研究其抗氧化活性,为拐枣枝多酚的应用提供理论依据。以拐枣枝为试验材料,在单因素试验的基础上选取浸提溶剂、料液比、浸提温度、浸提时间4个影响因素进行响应面优化试验;同时通过测定拐枣枝多酚对羟自由基、ABTS自由基、DPPH自由基的清除率来评估其抗氧化性。结果表明:拐枣枝多酚的最佳提取工艺为以无水乙醇为浸提剂,在料液比为1∶84(g/mL),浸提温度为60℃的条件下,浸提2.56 h,拐枣枝多酚的提取率为7.089%;拐枣枝多酚对羟自由基、ABTS自由基、DPPH自由基的最大清除率分别为90.97%、93.99%、97.19%。  相似文献   

3.
陈洪彬  杨敏  宋露露  董乐 《食品与机械》2017,33(4):139-143,194
以龙须菜为原料,研究超声波辅助提取龙须菜多酚的工艺条件及其抗氧化活性。单因素考察液料比、提取温度、超声时间对龙须菜多酚含量的影响,在此基础上,利用响应面分析法优化提取工艺。结果表明,液料比40:1(mL/g)、提取温度60℃、超声时间40min为龙须菜多酚提取最佳工艺条件(龙须菜多酚提取量为1.62 mg GAE/g)。体外抗氧化活性研究表明,龙须菜多酚具有一定清除DPPH自由基和羟自由基的能力,其IC_(50)值分别为56.67,18.78μg/mL,分别相当于15.89,536.4μg/mL的抗坏血酸。  相似文献   

4.
《食品与发酵工业》2016,(9):160-164
为比较不同粒径麸皮的多酚含量及抗氧化活性,该实验采用不同有机溶剂分别对麸皮的游离多酚和结合多酚进行提取,并测定最佳提取条件下不同粒径麸皮的多酚含量、抗氧化活性及阿魏酸含量。结果表明:游离多酚和结合多酚提取的最佳溶剂分别为体积分数80%丙酮和乙酸乙酯,其提取液的多酚含量及对DPPH·清除能力都是最高的。不同粒径麸皮其多酚含量和黄酮含量都有显著差异,结合多酚、结合黄酮、总多酚和总黄酮的含量都随粒径减小而显著降低,而游离多酚、游离黄酮含量显著增加(P0.05),不同粒径麸皮的抗氧化活性强弱与相应的多酚含量变化一致;麸皮中的阿魏酸主要存在于结合多酚中,且随粒径的减小其含量呈极显著降低(P0.01)。综上可知,粒径对麸皮中的多酚及抗氧化活性有显著影响。  相似文献   

5.
该文选取液料比、提取温度、提取时间、超声功率4个因素,以多酚得率为指标,应用响应面设计对超声辅助水提鹿茸菇多酚工艺进行优化,同时对鹿茸菇多酚体外抗氧化活性进行探究。响应面设计结果显示鹿茸菇多酚最优提取工艺为液料比 76∶1(mL/g),超声功率 250 W,提取温度 60 ℃,提取时间 90 min,多酚得率为(16.591±0.173)mg/g。体外抗氧化活性测试结果显示鹿茸菇多酚总抗氧化能力EC50=0.123 mg/mL,对DPPH和ABTS+自由基均表现出较强的清除活性,IC50分别为0.303 mg/mL和0.008 3 mg/mL。该研究表明鹿茸菇多酚提取工艺可行,鹿茸菇多酚具有较强的抗氧化能力。  相似文献   

6.
为提高黑加仑多酚的提取效率,采用乙醇溶液作为提取溶剂,超声波辅助对黑加仑果中多酚进行提取。通过单因素实验考察了乙醇体积分数、超声波功率、提取时间、料液比对黑加仑果多酚提取量的影响。在单因素实验的基础上,结合响应面试验优化提取工艺,并对黑加仑果多酚的抗氧化活性进行分析。结果表明:响应面法得到的黑加仑果多酚最佳提取工艺为:乙醇体积分数50%,超声波功率300 W,提取时间20 min,料液比1:10 g/mL。在上述提取条件下,黑加仑果多酚提取量为538.00 mg/100 g。抗氧化活性表明,黑加仑果多酚对DPPH自由基、羟自由基和ABTS+自由基清除率的IC50值分别为7.97、7.92和5.26 mg/mL,表明黑加仑果多酚具有较好的抗氧化活性。该结果可为黑加仑果多酚的工业化生产提供参考。  相似文献   

7.
以糜子麸皮为原料,采用超声-微波辅助酶法研究液料比、协同时间、提取温度、复合酶添加量对糜子麸皮可溶性膳食纤维(SDF)得率的影响。采用响应面法进行工艺优化,并分析糜子麸皮可溶性膳食纤维的抗氧化活性。结果表明:响应面法优化糜子麸皮SDF的最佳提取工艺为:液料比为31:1 mL/g、协同时间21 min、提取温度56 ℃、复合酶添加量1.4%,该条件下可溶性膳食纤维得率为6.35%,纯度为91.27%。抗氧化活性表明,当样品浓度为14 mg/mL时,糜子麸皮SDF还原力为1.219,其对于DPPH自由基清除率、ABTS+自由基清除率和羟自由基清除率的IC50值分别为2.45、26.15和5.98 mg/mL,说明糜子麸皮SDF具有较好的抗氧化活性。  相似文献   

8.
采用微波辅助提取黑加仑多酚,在微波温度、乙醇浓度、微波时间和微波功率四个单因素试验的基础上,利用响应面法对黑加仑多酚的提取工艺条件进行优化,并对黑加仑多酚提取液的抗氧化活性进行了研究。结果表明,微波辅助提取黑加仑多酚的最佳工艺条件是:微波温度50℃,乙醇浓度40%,微波时间4 min,微波功率700 W。在此条件下,黑加仑多酚得率为1.58%。黑加仑多酚提取液对ABTS自由基、DPPH自由基、羟基自由基的平均清除率分别为98%、86%,93%,黑加仑多酚提取液对ABTS自由基、DPPH自由基和羟基自由基具有良好的清除能力。  相似文献   

9.
目的:确定天浆壳多酚的最佳提取工艺,并对其抗氧化活性进行初步研究。方法:以多酚提取量为指标,在单因素实验基础上,采用响应面法优化天浆壳多酚提取工艺。通过多酚的还原能力、羟自由基和1,1-二苯基-2-三硝基苯肼(DPPH·)自由基的清除作用来评价其抗氧化活性。结果:天浆壳多酚最佳提取工艺:乙醇浓度(v/v)为42%,液料比为16∶1(m L/g),提取温度为61℃,超声时间为64 min。在此条件下,天浆壳多酚的提取量为(26.86±0.37)mg/10 g。该多酚具有一定的还原能力,当多酚浓度为1 mg/m L时,对羟自由基和DPPH·自由基清除率分别为70.78%和85.22%。结论:此优化工艺可行,该多酚具有一定的抗氧化能力。   相似文献   

10.
响应面法优化藜麦糠中多酚超声提取工艺及其抗氧化活性   总被引:1,自引:0,他引:1  
为了开发利用藜麦糠资源,采用单因素实验与响应面分析相结合的方法,优化了藜麦糠中多酚超声辅助提取工艺,并以BHT为阳性对照,DPPH·和·OH清除率为指标评价其抗氧化活性。结果显示,藜麦糠中多酚超声辅助最佳提取工艺为:乙醇浓度44%,提取时间31 min,提取温度61℃,料液比(g/mL) 1∶43,超声功率200 W。该工艺条件下,藜麦糠中多酚提取率为0.79%。藜麦糠多酚对·OH和DPPH·的清除率均随其浓度增加而增大,量效关系明显,对·OH和DPPH·的IC_(50)分别为13.52μg/mL和2.48μg/mL。表明优化的藜麦糠多酚提取工艺稳定可行,藜麦多酚具有强的抗氧化活性。  相似文献   

11.
目的:应用响应面设计优化超声辅助水提秀珍菇多酚工艺,分析多酚的抗氧化能力.方法:应用单因素与Box-Behnken设计,优化秀珍菇多酚提取工艺,并建立多酚体外总抗氧化分析与DPPH、ABTS自由基清除分析.结果:优化设计实验结果表明秀珍菇多酚最佳提取工艺为:液料比68 ∶ 1(mL/g),超声功率300 W,提取时间8...  相似文献   

12.
探究超声辅助乙醇提取海带多酚的工艺条件,选取超声温度、料液比、超声时间和乙醇浓度为试验因子,研究不同工艺参数对海带多酚提取量的影响,并采用响应面法优化海带多酚的提取工艺,通过测定其对DPPH自由基及ABTS的清除作用,评价其抗氧化活性。结果表明,超声辅助乙醇提取海带多酚的最佳工艺条件为:超声温度65.0℃、料液比1∶28(g/mL)、超声时间45min、乙醇浓度75%,在此条件下海带多酚提取率为2.118 mg/g,接近模型预测值2.139 mg/g。海带多酚对DPPH自由基和ABTS的清除率分别为68.87%和49.73%,IC50相应为81.119μg/mL和222.224μg/mL,其清除能力与多酚浓度之间呈一定的正相关关系,海带多酚具有一定的体外抗氧化能力。超声波辅助乙醇提取海带中多酚的方法可行、可靠,试验为海带生物活性成分的高效制备与抗氧化剂的深度开发提供了理论依据。  相似文献   

13.
本文主要研究超声微波联合提取法提取血红铆钉菇最佳工艺条件及其抗氧化活性。通过单因素结合响应面试验,以多糖得率为衡量指标,确定超声微波联合提取法提取血红铆钉菇多糖的最佳工艺条件,并与传统水提法和超声提取法所得多糖的抗氧化活性进行比较分析,从而探究3种提取方法对多糖提取效果的影响。结果表明:超声微波联合提取法提取血红铆钉菇多糖的最佳提取工艺条件为:超声时间8 min、微波时间6 min、微波温度92 ℃、液料比29:1 mL/g,得率为8.69%±0.19%,与传统水提法相比,得率提高12.89%,时间缩短88.33%;与超声提取法相比,得率提高8.63%,时间缩短30.00%;不同提取方法对·OH、DPPH·、ABTS+·、O2-·清除能力以及总还原力具有显著影响(P<0.05),3种提取方法所得多糖体外抗氧化活性由强至弱依次为:超声微波联合提取法>超声提取法>传统水提法。因此,采用超声微波联合提取法可明显提高血红铆钉菇多糖的抗氧化活性。  相似文献   

14.
苦丁茶多酚的提取及抗氧化活性   总被引:3,自引:0,他引:3  
刘佳  焦士蓉  唐远谋  唐鹏程  冯慧 《食品科学》2011,32(14):134-138
对苦丁茶中多酚的提取及抗氧化活性进行研究。通过单因素和响应面试验可知,在乙醇体积分数52%、料液比1:24(g/mL)、提取时间62s、微波功率291W条件下可获得最高的提取量115.40mg/g。苦丁茶多酚提取液对DPPH自由基、羟自由基、超氧阴离子自由基的半清除质量浓度以及对脂质过氧化的半抑制质量浓度分别为29.24、34.14、872.3、11.48mg/L。表明苦丁茶多酚具有较强的抗氧化作用。  相似文献   

15.
以鹧鸪茶为原料,选取超声辅助浸提法提取多酚化合物,探讨了超声功率、浸提温度、料液比、浸提时间对多酚得率的影响。在单因素试验基础上,通过正交试验优化提取工艺。采用DPPH自由基法、ABTS自由基法和羟自由基法评价多酚提取物的抗氧化性。结果表明,鹧鸪茶多酚的最佳工艺条件为:超声功率300 W、浸提温度70℃、料液比1:25 (g/mL)、时间30 min,在此条件下,多酚得率为(10.72±0.52)%(以干重计,w/w)。鹧鸪茶多酚提取物具有较强清除DPPH自由基、ABTS自由基和羟自由基能力,其IC50值分别为(0.0054±0.0003)、(0.077±0.004)、(0.114±0.006)mg/mL,说明鹧鸪茶多酚具有较强的体外抗氧化活性。  相似文献   

16.
为提高杨梅核的开发利用价值,利用超声辅助法提取杨梅核多酚,采用单因素和响应面方法优化提取条件,并对杨梅核多酚的抗氧化和体外降血糖活性进行研究.结果 表明:杨梅核的最佳提取工艺为:超声功率180 W、乙醇浓度57.4%、提取时间74.7 min、固液比1∶30.6,在此条件下获得的杨梅核多酚的提取量为8.50 mg/g....  相似文献   

17.
周琦  曾莹  祝遵凌 《现代食品科技》2018,34(11):200-207
为了研究香水莲花多酚提取工艺的最佳条件及其抗氧化能力,本文采用响应面分析法优化香水莲花多酚的提取工艺,以香水莲花多酚提取率为指标,对浸提温度、液料比、浸提时间以及乙醇浓度进行了单因素试验,并根据Box-Behnken试验原理,进行四因素三水平的响应面法优化;同时,以香水莲花多酚清除DPPH自由基、ABTS自由基,及FRAP还原力为指标,来评价其抗氧化性。研究结果表明:香水莲花多酚的最优提取条件是:浸提温度为58℃,液料比为48:1(mL/g),浸提时间为1.9 h,乙醇浓度为57%,在该条件下香水莲花多酚提取率可达8.28%。香水莲花多酚对DPPH自由基的清除率可达90.22%,对ABTS自由基的清除率达到88.01%,FRAP还原力则随多酚浓度的升高而增大,且呈一定的量效关系,表明香水莲花多酚的抗氧化作用较强。  相似文献   

18.
以紫果西番莲叶为对象,研究其多酚提取工艺及抗氧化活性。在单因素实验基础上采用Box-Behnken响应面分析法优化紫果西番莲叶多酚的提取工艺,考察液料比、提取时间、超声功率和超声温度对其多酚提取量的影响,以清除DPPH自由基和·OH能力评价紫果西番莲叶多酚的抗氧化活性。结果表明,最佳提取条件为:液料比36:1 mL/g、提取时间54 min、超声功率350 W和超声温度70℃,此时紫果西番莲叶中多酚提取量为(13.19±0.17) mg/g。抗氧化活性结果表明,紫果西番莲叶多酚具有较好的抗氧化活性,其清除DPPH自由基和·OH的半抑制浓度(IC50)分别为0.058和0.144 mg/mL。  相似文献   

19.
响应面试验优化小米糠膳食纤维改性工艺及其结构分析   总被引:1,自引:0,他引:1  
以小米糠为实验材料,对其进行气爆预处理,利用超声-微波协同法对气爆预处理的小米糠膳食纤维进行改性,以提高小米糠水溶性膳食纤维(soluble dietary fiber,SDF)的得率,并利用响应面法优化其工艺条件。同时借助凝胶色谱-示差-多角度激光光散射、红外光谱和X射线衍射等分析方法对改性前后小米糠膳食纤维的结构进行研究。结果表明:气爆条件设定为压力1.0 MPa、时间90 s,最优工艺参数为微波功率535 W、料液比1∶50(g/m L)、超声-微波协同时间57 min,SDF含量达到10.841%。凝胶色谱-示差-多角度激光光散射分析显示改性小米糠SDF分子质量变小,表明经改性处理后小米糠SDF分子链变短且聚合度降低。红外光谱分析表明,改性小米糠SDF和水不溶性膳食纤维(insoluble dietary fiber,IDF)的化学官能团变化不大,并且有明显的糖类特征吸收峰。X射线衍射分析显示改性小米糠IDF的结晶度上升,表明改性小米糠IDF中非结晶区有部分降解,并且转化为SDF。扫描电子显微镜结果显示改性小米糠SDF的颗粒表面变得粗糙,疏松多孔,由小颗粒聚集而成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号