首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

2.
A new chemically modified bismuth film electrode coated with an ionic liquid [(1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB)] and Nafion was developed for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Compared with conventional bismuth film electrodes, this electrode exhibited greatly improved electrochemical activity for Pb2+ and Cd2+ detection due to the unique properties of Nafion polymer and ionic liquid. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 10–120 µg L?1 with a detect limit of 0.2 µg L?1 for Pb2+, and 0.5 µg L?1 for Cd2+ for 120s deposition. High reproducibility was indicated from the relative standard deviations (1.9 and 2.5 %) for nine repetitive measurements of 20 µg L?1 Pb2+ and Cd2+, respectively. In addition, the surface characteristics of the modified BiFE were investigated by scanning electron microscopy (SEM), and results showed that fibril‐like bismuth nanostructures were formed on the porous Nafion polymer matrix. Finally, the developed electrode was applied to determine Pb2+ and Cd2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

3.
This study describes the utilisation of a glassy carbon electrode modified with a composite of multi-walled carbon nanotube and Cr-based metal-organic framework (MIL-101, Cr-BDC, BDC = 1,4-benzenedicarboxylate) for the sensitive, simple and fast voltammetric determination of picloram in environmental samples. Under optimum conditions, additions of picloram using square wave voltammetry showed linear ranges of picloram concentrations from 24.15 to 3018 µg?L?1 (0.1–12.5 μM) and from 3018 to 9658 µg?L?1 (12.5–40 μM) with a detection limit of 14.49 µg?L?1 (0.06 µM). The method was successfully applied to the determination of picloram in tap and river water samples spiked with picloram without any purification step by the standard addition method. The good recovery values obtained ranging from 97.5% to 105.0% revealed the reliability and accuracy of the method.  相似文献   

4.
A self-assembled sensor based on a boron-doped diamond was investigated as a sensitive tool for voltammetric analysis of a member of a pyridine herbicide family - picloram. A cyclic voltammetry and a differential pulse voltammetry were applied for investigation of the voltammetric behaviour and quantification of this herbicide. Picloram yielded one well-developed irreversible oxidation signal at a very positive potential about +1.5 V vs. Ag/AgCl/3 mol L?1 KCl electrode in an acidic medium and 1 mol L?1 H2SO4 was chosen as a suitable supporting electrolyte. Operating parameters of differential pulse voltammetry were optimized and the proposed voltammetric method provided a high repeatability (a relative standard deviation of 20 repeated measurements at a concentration level of picloram of 50 µmol L?1 equaled to 2.58%), a linear concentration range from 2.5 to 90.9 µmol L?1 and a low limit of detection (LD = 1.64 µmol L?1). Practical usefulness of the ‘environmentally-green’ electrochemical sensor was verified by an analysis of spiked water samples with satisfactory recoveries.  相似文献   

5.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

6.
A novel method for the online extraction and preconcentration of four sulfonamides was developed using column switching liquid chromatography. Sulfadiazine, sulfathiazole, sulfamethoxypyridazine and sulfamethoxazole were analysed in water samples and preconcentrated in a C18 guard column. Suitable validation parameters were obtained, such as precision, accuracy and relative recovery, in accordance with the validation guidelines of the Food and Drug Administration. Low limits of detection (0.05–0.09 µg L?1) and quantification (0.30 µg L?1, for all of them) were obtained. The quadratic polynomial model was used to adjust the calibration data, and the coefficients of determination were higher than 0.999 for all the analytes. The method was shown to be robust to the assayed parameters according to Youden’s test. The proposed method was successfully used to determine sulfonamides in 11 different fish farming water samples, in which sulfadiazine (0.732 µg L?1), sulfamethoxazole (0.531 µg L?1), sulfathiazole (0.546–1.856 µg L?1) and sulfamethoxypyridazine (0.369–1.509 µg L?1) were found.  相似文献   

7.
Conventional (CPE) and miniaturized (m‐CPE) carbon paste electrodes consisting of a carbon paste filled capillary were used for differential pulse voltammetric determination of chlortoluron in samples of river water and soil, in the latter case after the extraction by methanol. Britton‐Robinson buffer pH 3 with low content of methanol was found to be optimal for the determination. The achieved determination limits were 2.8 µmol L?1 and 0.34 µmol L?1 in river water, and 3.1 and 4.3 µg g?1 in soil, using CPE and m‐CPE, respectively.  相似文献   

8.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

9.
A simple, fast, sensitive and greener voltammetric procedure for simultaneous analysis of nickel (Ni) and cobalt (Co) by square wave adsorptive cathodic stripping voltammetry (SW‐AdCSV) using a solid bismuth vibrating electrode is presented for the first time. The procedure enables to determine Ni together with Co, in ammonia buffer 0.1 M (pH 9.2) and in the presence of oxygen, and involves an adsorptive accumulation of metal‐dimethylglyoxime (Ni‐DMG and Co‐DMG) complexes on the electrode surface. For Ni and Co, the detection limits, obtained with 30 s of accumulation time, were 0.6 and 1.0 µg L?1, respectively. The method was free of metals (Cd2+, Cr3+, Cr6+, Cu2+, Fe3+ and Pb2+ up to 50 µg L?1, Al3+ and Mn2+ up to 500 µg L?1; Zn2+ up to 300 µg L?1) interferences up to the concentrations mentioned in brackets. The proposed method was validated for simultaneous determination of Ni and Co in a certified reference surface and river waters with good results.  相似文献   

10.
A new chemically modified carbon paste electrode by 2,2?-((pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))diphenol (L) ligand has been made and used as a sensor for determination of trace mercury and cadmium ions with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Complexation studies of the ligand with Cu2+, Zn2+, Hg2+, Ni2+ and Cd2+ ions by conductometric method in acetonitrile–ethanol mixture at 25°C show that the ML complexes have formed. The formation constants of complexes were calculated from the computer fitting of the molar conductance–mole ratio data, and the stability of the resulting complexes varied in order of Cd2+ > Hg2+ > Cu2+ > Zn2+ > Ni2+. Then a simple and effective chemically modified carbon paste electrode with L was prepared, and the electrochemical properties and applications of the modified electrode were investigated. Under the optimal conditions, the detection limit was 0.0494 μg L?1 and 0.0782 μg L?1 for cadmium and mercury ions, respectively, and the linear range for both metal ions were from 1 to 100 μg L?1. The electrode shows high sensitivity, reproducibility and low cost, and was successfully applied to determination of Cd2+ and Hg2+ ions in water samples with recovery in the range of 97–101%.  相似文献   

11.
The monitoring of the heavy metal pollution in wastewater is increasingly becoming a crucial global issue since they tend to accumulate in food chains and can cause many biological abnormalities. In this work, it was developed a novel lead ion-imprinted polymer (IIP) using sodium dodecyl sulphate (SDS) as a second template to be used as adsorbent in solid phase extraction (SPE) for determination of lead from wastewater samples by UV–vis spectrophotometry. The polymer called IIP–SDS was synthesised by a double-imprinting process with lead (template) and SDS (template). IIP–SDS was characterised by infrared spectroscopy Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. IIP–SDS showed good recovery for lead (around 82.0%), while the IIP (only lead as template) was 72.2% and non-IIP was 44.9%. Thus, the double-imprinting process for the preconcentration of Pb2+ proved to be a more adequate methodology than IIP with a single template. The optimised parameters of sample preparation were washing solvent (2.0 mL of tetrahydrofuran), type and volume of eluent (5 mL of 1 mol L?1 hydrochloric acid), sample amount (30 mL of water spiked with 10.0 µg mL?1), amount of IIP–SDS (400 mg) and sample pH (pH = 4.5). Linearity ranged from 10 to 125 µg L?1 with r > 0.992. The limit of detection and quantification were 6.3 and 10 µg L?1, respectively. The precision (relative standard deviation, %) and accuracy (relative error, %) were lower than 15%. Finally, IIP–SDS may be an alternative and effective adsorbent for SPE procedures in monitoring of wastewater samples.  相似文献   

12.
Chemical sensors relying on graphene-based materials have been widely used for electrochemical determination of metal ions and have demonstrated excellent signal amplification. This study reports an electrochemically reduced graphene oxide (ERGO)/mercury film (HgF) nanocomposite-modified pencil graphite electrode (PGE) prepared through successive electrochemical reduction of graphene oxide (GO) sheets and an in situ plated HgF. The ERGO-PG-HgFE, in combination with dimethylglyoxime (DMG) and square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV), was evaluated for the determination of Ni2+ in tap and natural river water samples. A single-step electrode pre-concentration approach was employed for the in situ Hg-film electroplating, metal-chelate complex formation, and non-electrolytic adsorption at –0.7 V. The current response due to nickel-dimethylglyoxime [Ni(II)-DMG2] complex reduction was studied as a function of experimental paratmeters including the accumulation potential, accumulation time, rotation speed, frequency and amplitude, and carefully optimized for the determination of Ni2+ at low concentration levels (μg?L?1) in pH 9.4 of 0.1 M NH3–NH4Cl buffer. The reduction peak currents were linear with the Ni2+ concentration between 2 and 16?μg?L?1. The limits of detection and quantitation were 0.120?±?0.002?µg?L?1 and 0.401?±?0.007?µg?L?1 respectively, for the determination of Ni2+ at an accumulation time of 120?s. The ERGO-PG-HgFE further demonstrated a highly selective stripping response toward Ni2+ determination compared to Co2+. The electrode was found to be sufficiently sensitive to determine metal ions in water samples at 0.1?µg?L?1, well below the World Health Organization standards.  相似文献   

13.
A new voltammetric sensor based on electropolymerization of glycine at glassy carbon electrode (GCE) was developed and applied to determine of pyrazinamide (PZA) by square-wave voltammetry (SWV). The initial cyclic voltammetric studies showed an electrocatalytic activity of poly(Gly)/GCE on redox system of pyrazinamide in 0.1 mol L?1 phosphate buffer solution pH 7.5, with E Pc and E Pa in ?0.85 and ?0.8 V (versus E Ag/AgCl), respectively. Studies at different scan rates suggest that the redox system of pyrazinamide at poly(Gly)/GCE is a process controlled by diffusion in the interval from 10 to 100 mV s?1. Square-wave voltammetry-optimized conditions showed a linear response of PZA concentrations in the range from 0.47 to 6.15 μmol L?1 (R?=?0.998) with a limit of detection (LOD) of 0.035 μmol L?1 and a limit of quantification (LOQ) of 0.12 μmol L?1. The developed SWV-poly(Gly)/GCE method provided a good intra-day (RSD?=?3.75 %) and inter-day repeatability (RSD?=?4.96 %) at 4.06 μmol L?1 PZA (n?=?10). No interference of matrix of real samples was observed in the voltammetric response of PZA, and the method was considered to be highly selective for the compound. In the accuracy test, the recovery was found in the range of 98.2 and 104.0 % for human urine samples and pharmaceutical formulation (tablets). The PZA quantification results in pharmaceutical tablets obtained by the proposed SWV-poly(Gly)/GCE method were comparable to those found by official analytical protocols.  相似文献   

14.
In the present work, a sensitive, facile and disposable sensing platform for trace analysis of heavy metal ions was developed at the Bi modified graphene‐poly(sodium 4‐styrenesulfonate) composite film screen printed electrode (GR/PSS/Bi/SPE). The GR/PSS/Bi/SPE improved sensitivity and linearity due to the functionalization of graphene with negatively charged PSS providing more absorbing sites. The detection limit of the GR/PSS/Bi/SPE is found to be 0.042 µg L?1 for Cd2+ and 0.089 µg L?1 for Pb2+ with linear responses of Cd2+ and Pb2+ in the range of 0.5–120 µg L?1. Finally, the practical application was confirmed in real water with satisfactory results.  相似文献   

15.
A square wave cathodic stripping voltammetric (SWCSV) method has been developed for the determination of insecticide diafenthiuron. The procedure is based on controlled accumulation of the insecticide on a static hanging mercury drop electrode (SHMDE) at 0.00?mV (vs. Ag/AgCl) in Britton-Robinson buffer solution (pH 7.0). The insoluble mercury compound was reduced at ?510?mV during the cathodic potential scan. The peak currents were linearly related to insecticide concentration between 30.4 and 3200?µg?L?1 . The detection and quantification limit were 9.1?µg?L?1 and 30.4?µg?L?1, respectively. The proposed analytical procedure was applied to natural water and soil samples. The method was extended to direct determination of diafenthiuron in insecticide formulation Polo® 50 WP and average content of 50.3?±?1.7 (m/m) at 90% confidence level, in close agreement with the 50.0% quoted by the manufacturer. HPLC comparison method indicated that accuracy was in agreement with that obtained by the proposed method.  相似文献   

16.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

17.
The highly boron‐doped diamond electrode (HBDD) combined with square wave voltammetry (SWV) was used in the development of an analytical procedure for diquat determination in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices. Preliminary experiments realised in a medium of 0.05 mol L?1 Na2B4O7 showed the presence of two voltammetric peaks around ?0.6 V and around ?1.0 V vs. Ag/AgCl/Cl? 3.0 mol L?1, where the first peak could be successfully used for analytical proposes due the facility in the electrode surface renovation. After the experimental and voltammetric optimisation, the calculated detection and quantification limits were 1.6×10?10 mol L?1 and 5.3×10?10 mol L?1 (0.057 µg L?1 and 0.192 µg L?1, respectively), which are lower than the maximum residue limit established for fresh food samples by the Brazilian Sanitary Vigilance Agency. The proposed methodology was used to determine diquat residues in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices and the calculated recovery efficiencies indicated that the proposed procedure presents higher robustness, stability and sensitivity, good reproducibility, and is very adequate for diquat determination in complex samples.  相似文献   

18.
The evaluation of the voltammetric behaviour and the determination of herbicide molinate were performed for the first time over the surface of solid amalgam electrode fabricated with silver nanoparticles using cyclic voltammetry and square-wave voltammetry techniques. The experimental and instrumental parameters were evaluated to reach the maximum analytical response for molinate. It was achieved when a medium composed of 0.04 mol L?1 Britton–Robinson buffer at the pH value of 4.0 was used. Under these conditions, molinate showed one pronounced reduction peak at Ep = ?0.37 V (vs. Ag/AgCl 3 mol L?1) that was characterised as an irreversible system. An analytical curve was constructed at the concentration range from 9.36 to 243.49 µg L?1 and a limit of detection of 2.34 µg L?1 was obtained. The amalgam electrode presented good stability during the measurements with relative standard deviation (RSD) values of 2.9% for the repeatability and 5.4% for the reproducibility. The voltammetric method developed here could be conveniently applied for the determination of molinate in river water and rice spiked samples at levels below those established on the legislations of European Union and Brazil with good accuracy (RSD of less than 5% for all samples). Comparison with HPLC technique was carried out and the results indicated satisfactory concordance. According to the results depicted here, the silver nanoparticles solid amalgam electrode showed itself highly sensitive and an interesting alternative for the routine analysis of molinate in water and food samples. Furthermore, it introduces an environmentally acceptable alternative to the mercury electrodes, most commonly used for determination of reducible pesticides.  相似文献   

19.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

20.
The quantification of ochratoxin A is studied at cysteamine self‐assembled monolayer modified gold electrodes in red wine samples by square wave voltammetry. Detection and quantification limits of 0.004 µg L?1 and 0.012 µg L?1, respectively, were determined. The recovery percentages were in the range from 146 % to 94.0 % at spiking levels ranging from 0.02 to 5 µg L?1. The variation coefficients for within‐laboratory repeatability varied from 31.4 to 11.5 % for spiked level from 0.02 to 2.0 µg L?1. The developed electrochemical method is efficient, reproducible, and ultrasensitive for the quantification of OTA in red wine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号