首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
采用粉末冶金的方法,以Al2O3,SiO2,SiC和MgO等纳米颗粒为增强相,制备出4种不同颗粒的纳米复合材料,研究了各增强相对复合材料显微组织与性能的影响.结果表明:在相同的质量分数(ω)和制备工艺下,不同弥散相颗粒的弥散强化铜合金显微组织不同,铜基体上大体均匀地分布着细小的弥散相颗粒,但部分区域仍存在偏聚现象.4种复合材料的电导率相近,抗拉强度方面Cu/Al2O3与Cu/SiO2的性能要略好于Cu/SiC与Cu/MgO.  相似文献   

2.
CuO—Al混合粉末微波加热至一定温度下可发生内氧化反应,用X射线衍射仪对反应后的复合粉末进行成份分析,确定CuO-Al混合粉末发生内氧化反应的最佳温度与时间。在此条件下采用常规烧结方法制备Al2O3/Cu复合材料。SEM分析表明,微波内氧化法可以有效制备Al2O3/Cu复合材料,细小的Al2O3增强相弥散分布在Al2O3/Cu复合材料中。  相似文献   

3.
采用非匀相沉淀法制备纳米Al2O3包裹Al复合粉体,通过热压烧结制备出Al2O3/Al复合材料,利用差热分析仪、SEM、教显维氏硬度计及万能试验机测试研究了复合材料的微观结构及热力学性能.结果表明,经1 050℃/30 min煅烧岳获得的复合粉体成分为α-Al2O3和Al;同单相Al2O3相比,纳米Al的添加降低了瓷体的烧结温度;添加Al的摩尔数分数为10%的Al2O3/Al复合陶瓷的抗弯强度提高10%,断裂韧性提高了86%,硬度值随Al的增加而下降.  相似文献   

4.
目的研究Pt/Al2O3复合生物陶瓷的结构、成分及性能.方法利用化学镀法和无压烧结法制备Pt/Al2O3复合粉体和相应的块体材料,并对粉体及块体采用XRD、高分辨电子显微分析(HRTEM)、能量散射谱(EDS)、热重-差热分析(TG-DTA)、电感耦合等离子体发射光谱(ICP-IRIS)、微型硬度测试等技术对其形貌、结构、成分、性能进行研究.实验中化学镀Pt的原料粉是利用溶胶-凝胶方法合成的非晶Al2O3粉末.结果由溶胶-凝胶法所制备的Al2O3在1 150℃时完全转变成α-Al2O3;化学镀后平均尺寸约为20 nm的Pt纳米颗粒包覆在Al2O3表面,其烧结体的断裂韧性是Al2O3烧结体的1.65倍.结论加入金属相Pt后,有效地增加了Al2O3的断裂韧性,由于金属Pt颗粒包覆在Al2O3表面,增加了其束缚能,阻碍了Al2O3陶瓷颗粒在高温烧结过程中的长大,这样可以获得纳米金属/陶瓷复合材料.  相似文献   

5.
目的 采用稀土氧化物(Re2O3)进行弥散强化,探讨稀土氧化物种类及掺量对复合材料的性能影响,提高Ag基复合材料的熔化温度和力学性能.方法 通过化学共沉积制取了Re2O3/Ag复合粉体,并在35 MPa下压制成型,进而在氩气保护下850℃高温烧结.制备出稀土氧化物弥散分布的银基复合材料样品,并对其熔化温度、力学性能等指标进行测试.结果 Y2O3掺量为4%时可获得最大的溶化温度为975℃,掺量为1%时可获得最大的抗拉强度.延伸率随Re2O3质量分数的增加而下降.结论 Re2O3弥散强化Ag基复合材料的熔化温度、力学 性能较纯Ag有所提高,可作为OPIT工艺的包套材料.  相似文献   

6.
选用工业生产的SiC亚微米粉体,利用置换反应制备纳米Cu.采用直接还原-旋转沉淀工艺制备SiC/Cu包裹粉体.采用气氛烧结获得金属陶瓷复合材料.分别通过AES、XRD、SEM等分析方法对原始SiC粉体、包裹复合粉体和烧成样品进行表征.结果表明:包裹复合粉体具有"核-壳"结构,由于Cu的自发氧化使得复合粉体中出现Cu2O.包裹结构中SiC颗粒抑制了烧结过程中Cu的晶粒生长,从而使烧结样品呈现纳米结构.  相似文献   

7.
采用冷等静压成型无压烧结方法制备了不同Al2O3含量(体积分数φ,全文同)的Al2O3/Li Ta O3(ALT)陶瓷复合材料,烧结温度分别为1 250、1 300、1 350和1 400℃.采用X线衍射(XRD)、扫描电子显微镜(SEM)、电子探针和硬度测试等方法,研究其在不同烧结温度下的致密度、显微结构和硬度.结果表明:ALT陶瓷复合材料中Li Ta O3和Al2O3两相能稳定共存,随Al2O3含量和烧结温度增加,ALT陶瓷复合材料的致密度和硬度也逐渐增加,最高硬度约为6 GPa;ALT陶瓷复合材料显微结构缺陷较多,烧结性能较差,烧结工艺和方法有待进一步改进.  相似文献   

8.
采用化学镀方法在平均粒径为200nm的Al2O3粉体表面镀覆Ni-P合金,制备出了Ni-P/Al2O3复合粉体,再利用无压烧结将此种复合粉体制备成氧化铝基特种陶瓷。这一方法不仅降低了烧结温度,也进一步提高了陶瓷的性能,尤其是在提高韧性方面。结果表明,粉体镀层为晶态,主要由NiP2相和NiP相组成,镀层中含镍量为9.32%,含磷量为2.38%。为低磷合金镀层,制备特种陶瓷所需的烧结温度由制备单一氧化铝陶瓷所需的1700℃降低至1350℃;断裂韧性也从单一Al2O3陶瓷的3.0MPa·m^1/2提高到6.91MPa·m^1/2,增加了130.3%;耐磨性与纯氧化铝陶瓷相当。  相似文献   

9.
采用纳米和亚微米级的α-Al2O3,以及微米级的(W,Ti)C粉体为原料,制备了Al2O3/(W,Ti)C纳米复合陶瓷材料.在基体Al2O3含有体积分数为11%的纳米Al2O3时复合材料的抗弯强度和断裂韧性达到最优,其抗弯强度、断裂韧性和硬度分别为840 MPa,6.55 MPa·m1/2和20.1 GPa.TEM实验表明,纳米颗粒的加入明显抑止了基体晶粒的长大,形成了典型的骨架结构,材料的断裂方式为沿晶断裂和穿晶断裂的混合.内晶型和晶间型第二相颗粒产生的残余应力场、断裂模式的改变和晶粒细化强化促进了复合材料抗弯强度和断裂韧性的提高.  相似文献   

10.
(Fe-Al)/Al_2O_3复合纳米粉体的机械球磨特性   总被引:7,自引:1,他引:7  
采用机械球磨的方法制备(Fe Al)/Al2O3复合纳米粉体,通过对粉体的X衍射分析研究其机械球磨特性.结果表明:Al2O3阻碍球磨过程中的Fe、Al合金化,有利于粉末的纳米化和机械活化,并大幅提高出粉率.这对机械活化烧结FeAl基Al2O3弥散型块体复合纳米材料,提高机械球磨效率具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号