共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
秸秆生产乙醇预处理关键技术 总被引:1,自引:0,他引:1
乙醇是一种很有希望替代有限石油的燃料.目前燃料乙醇已在我国部分省市得到应用.我国目前燃料乙醇生产的主要原料是陈化粮,但我国陈化粮可用于燃料乙醇生产的量十分有限.真正可大量转化乙醇的应是纤维质材料.纤维质材料转化乙醇的挑战性问题是产量偏低、成本偏高.纤维质材料的预处理是转化乙醇过程中的关键步骤,该步骤的优化可明显提高纤维素的水解率,进而降低乙醇的生产成本.本文总结了纤维质材料预处理的各种方法,对各种方法的优缺点进行了综述和分析,并对生物质预处理技术发展的前景进行了展望. 相似文献
4.
以玉米秸秆为研究对象,采用5%硫酸和5%氢氧化钠对其进行预处理,通过对解聚前后玉米秸秆官能团表征和成分分析,发现酸、碱处理后秸秆中大部分半纤维素和木质素被脱除,其中先碱后酸、先酸后碱处理后秸秆的木质素含量由28.04%分别下降至11.54%和12.14%,而纤维素相对含量由42.02%分别增加到75.12%和77.68%。通过浸渍法制备的非贵金属5%Ni-15%W/MCM-41催化剂用于催化转化预处理秸秆制取多元醇,结果表明:与未经处理的玉米秸秆多元醇得率21.00%相比,先碱后酸、先酸后碱处理的玉米秸秆催化转化多元醇得率分别达到60.72%和61.40%。α-葡萄糖和β-葡萄糖的加氢结果显示乙二醇(EG)和1,2-丙二醇(1,2-PG)得率均相近,说明葡萄糖的旋光构型对催化加氢没有影响。与C6糖加氢产物分布比较,C5糖的产物中除了有EG和1,2-PG,同时还有丙三醇的生成,提出了糖加氢制取多元醇的可能机理。 相似文献
5.
秸秆超(亚)临界水预处理与水解技术* 总被引:5,自引:0,他引:5
秸秆的资源化特别是乙醇化技术由于其技术可行性和产物高值化受到了广泛关注。预处理与水解是乙醇化的关键过程。目前针对秸秆的转化已经开展了多种化学或生物技术的研究,其中超(亚)临界技术与传统技术相比显示了独特的优势,如更高的反应速率、不需催化剂、无产物抑制等。本文在总结秸秆传统预处理与水解技术的基础上,对秸秆超(亚)临界水预处理与水解的过程和机理,特别是超临界亚临界组合技术的研究现状、工艺及其相关研究的进展进行了综述和分析,并阐述了超临界亚临界组合技术首先在超临界水中打破纤维结构进行初级水解,再通过亚临界反应将初级水解产物低聚糖进一步水解为葡萄糖的基本原理。最后对超(亚)临界技术在秸秆资源化领域的研究和应用前景进行了展望。 相似文献
6.
微波辅助DMSO/AmimCl复合溶剂预处理玉米秸秆的酶解影响 总被引:1,自引:0,他引:1
为了实现玉米秸秆纤维素的高效糖化, 设计利用微波加热辅助的离子液体1-烯丙基-3-甲基咪唑氯盐(AmimCl)/二甲基亚砜(DMSO)复合溶剂生物质预处理体系, 破坏玉米秸秆天然结构, 提高纤维素酶解效率. 研究发现, 15% (w)DMSO, 110℃, 60 min 及4 g 秸秆/100 g 复合溶剂为最适预处理条件. 在此条件下, 秸秆溶解率、提取率可分别达46.6%和22.9%; 提取物纤维素酶解率14 h 可达71.4%, 相较于天然玉米秸秆的20 h 酶解率12.5%有极大提高. 通过XRD,SEM及1H NMR 分析发现:秸秆预处理后, 提取物纤维素晶型由Ⅰ 型变为Ⅱ 型, 残渣纤维素相对结晶度明显降低, 有利于纤维素酶解的进行, 达到了生物质预处理的目的; 预处理过程中使用的AmimCl 离子液体经简单回收再生, 结构及秸秆溶解性能未发生变化, 可循环使用. 为玉米秸秆生物质预处理提供了一个新的方案. 相似文献
7.
提出了一个木质纤维素生物质预处理的全绿色加工过程.以玉米秸秆和玉米芯为原料,以超临界CO2和超声偶合法对木质纤维素进行预处理.超临界CO2预处理条件为:压力15-25 MPa,温度120170℃,含水量50%,反应时间0.54 h.超声场功率600W,温度80℃,作用时间2-8 h.用纤维素酶水解反应获得的还原糖总量来评价预处理效果.结果表明,单纯超临界CO2和超临界CO2偶合超声预处理都能够提高生物质水解反应还原糖产量.对于玉米芯,超临界CO2预处理(170℃,20 MPa,3 0min)后,还原糖产率为62%(未预处理的为12%).对于玉米秸秆(170℃,20 MPa,2.5 h),还原糖产率为46.4%.对于玉米芯,超临界CO2偶合超声预处理(600 W,80℃下超声处理6 h,然后用170℃,20 MPa超临界CO2预处理30 min)后,还原糖产率为87%.对于玉米秸秆,超临界CO2偶合超声预处理(600 W,80℃下超声处理8 h,然后用170℃,20 MPa超临界CO2预处理1 h)后,还原糖产率为25.5%.与未处理生物质相比,X射线衍射结果表明玉米秸秆和玉米芯在超临界CO2和超声预处理后其结晶度没有明显变化.扫描电镜分析则发现木质纤维素的表面积显著增加. 相似文献
8.
采用高浓度的玉米秸秆(60g·L-1)作为产氢底物,研究了在氢发酵过程中几个关键过程参数对发酵产氢的影响,以期在秸秆废弃物的清洁氢能转化过程中减少发酵废水的生成总量.结果表明,在酸化秸秆浓度为60g·L-1,碳酸氢铵添加量为1.2g·L-1,十六烷基三甲基溴化铵添加量为30mg·L-1,菌株Bacillus sp.FS2011添加量为10%(质量分数),以及初始pH=7.5±0.5、发酵温度(37±1)℃条件下,最大产氢量和产氢速率分别为(79.8±1.5)mL·g-1和3.78mL·g-1·h-1.与使用低浓度秸秆(≤20g·L-1)底物时相比,生成的氢发酵废水总体积减小了约67%. 相似文献
9.
10.
以玉米秸秆为研究对象,经过2%硫酸预处理后,利用果胶酶、β-葡萄糖苷酶、纤维素酶三种酶协同酶解,以提高玉米秸秆的酶解产糖量。结果表明:当酶解时间为48h,果胶酶、β-葡萄糖苷酶、纤维素酶分别为45U/mL、30U/mL、60U/mL时,葡萄糖、木糖和酶水解得率分别为67.83%、3.25%、73.65%,相比纤维素酶单一酶解的葡萄糖、木糖和酶水解得率分别提高了65.04%、20.82%、65.06%。分步糖化发酵5天后,相比单一酶解发酵乙醇含量提高了72.5%。说明利用三种酶复合处理,能明显提高酶解产糖量。研究结果为玉米秸秆转化为可发酵糖技术的研究提供重要参考。 相似文献
11.
Renata Bura Rodney J. Bothast Shawn D. Mansfield John N. Saddler 《Applied biochemistry and biotechnology》2003,106(1-3):319-335
A batch reactor was employed to steam explode corn fiber at various degrees of severity to evaluate the potential of using
this feedstock as part of an enzymatically mediated cellulose-to-ethanol process. Severity was controlled by altering temperature
(150–230°C), residence time (1–9 min), and SO2 concentration (0–6% [w/w] dry matter). The effects of varying the different parameters were assessed by response surface
modeling. The results indicated that maximum sugar yields (hemicellulose-derived water soluble, and cellulose-derived following
enzymatic hydrolysis) were recovered from corn fiber pretreated at 190°C for 5 minutes after exposure to 3% SO2. Sequential SO2-catalyzed steam explosion and enzymatic hydrolysis resulted in a conversion efficiency of 81% of the combined original hemicellulose
and cellulose in the corn fiber to monomeric sugars. An additional posthydrolysis step performed on water soluble hemicellulose
stream increased the concentration of sugars available for fermentation by 10%, resulting in the high conversion efficiency
of 91%. Saccharomyces cerevisiae was able to ferment the resultant corn fiber hydrolysates, perhydrolysate, and liquid fraction from the posthydrolysis steps
to 89, 94, and 85% of theoretical ethanol conversion, respectively. It was apparent that all of the parameters investigated
during the steam explosion pretreatment had a significant effect on sugar recovery, inhibitory formation, enzymatic conversion
efficiency, and fermentation capacity of the yeast. 相似文献
12.
Kim Sung Bae Um Byung Hwan Park Soon Chul 《Applied biochemistry and biotechnology》2001,91(1-9):81-94
The effect of pretreatment reagent and hydrogen peroxide on enzymatic digestibility of oak was investigated to compare pretreatment
performance. Pretreatment reagents used were ammonia, sulfuric acid, and water. These solutions were used without or in combination
with hydrogen peroxide in the percolation reactor. The reaction was carried out at 170°C for the predetermined reaction time.
Ammonia treatment showed the highest delignification but the lowest digestibility and hemicellulose removal among the three
treatments. Acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digestibility.
Hemicellulose recovery was 65–90% and digestibilities were >90% in the range of 0.01–0.2% acid concentration. In both treatments,
hydrogen peroxide had some effect on digestibility but decomposed soluble sugars produced during pretreatment. Unlike ammonia
and acid treatments, hydrogen peroxide in water treatment has a certain effect on hemicellulose recovery as well as delignification.
At 1.6% hydrogen peroxide concentration, both hemicellulose recovery and digestibility were about 90%, which were almost the
same as those of 0.2% sulfuric acid treatment. Also, digestibility was investigated as a function of hemicellulose removal
or delignification. It was found that digestibility was more directly related to hemicellulose removal rather than delignification. 相似文献
13.
Karin Öhgren Mats Galbe Guido Zacchi 《Applied biochemistry and biotechnology》2005,124(1-3):1055-1067
In this study, corn stover with a dry matter content of 20% was impregnated with SO2 and then steam pretreated for various times at various temperatures. The pretreatment was evaluated by enzymatic hydrolysis
of the solid material and analysis of the sugar content in the liquid. The maximum overall yield of glucose, 89% of the theoretical
based on the glucan in the raw material, was achieved when the corn stover was pretreated at 200°C for 10 min. The maximum
overall yield of xylose, 78%, was obtained with pretreatment at 190°C for 5 min. 相似文献
14.
Fred A. Keller Jenny E. Hamilton Quang A. Nguyen 《Applied biochemistry and biotechnology》2003,105(1-3):27-41
Typical pretreatment requires high-energy (steam and electricity) and corrosion-resistant, high-pressure reactors. A review
of the literature suggests that fungal pretreatment could potentially lower the severity requirements of acid, temperature
and time. These reductions in severity are also expected to result in less biomass degradation and consequently lower inhibitor
concentrations compared to conventional thermochemical pretreatment. Furthermore, potential advantages of fungal pretreatment
of agricultural residues, such as corn stover, are suggested by its effectiveness in improving the cellulose digestibility
of many types of forage fiber and agricultural wastes. Our preliminary tests show a three- to five-fold improvement in enzymatic
cellulose digestibility of corn stover after pretreatment with Cyathus stercoreus; and a ten- to 100-fold reduction in shear force needed to obtain the same shear rate of 3.2 to 7 rev/s, respectively, after
pretreatment with Phanerochaete chrysosporium. 相似文献
15.
Bura Renata Mansfield Shawn D. Saddler John N. Bothast Rodney J. 《Applied biochemistry and biotechnology》2002,98(1-9):59-72
Corn fiber, a by-product of the corn wet-milling industry, represents a renewable resource that is readily available in significant
quantities and could potentially serve as a low-cost feedstock for the production of fuel-grade alcohol. In this study, we
used a batch reactor to steam explode corn fiber at various degrees of severity to evaluate the potential of using this feedstock
in the bioconversion process. The results indicated that maximum sugar yields (soluble and following enzymatic hydrolysis)
were recovered from corn fiber that was pretreated at 190°C for 5 min with 6% SO2. Sequential SO2-catalyzed steam explosion and enzymatic hydrolysis resulted in very high conversion (81%) of all polysaccharides in the corn
fiber to monomeric sugars. Subsequently, Saccharomyces cerevisiae was able to convert the resultant corn fiber hydrolysates to ethanol very efficiently, yielding 90–96% of theoretical conversion
during the fermentation process. 相似文献
16.
Corn stover, the most abundant agricultural residue in Hungary, is a potential raw material for the production of fuel ethanol
as a result of its high content of carbohydrates, but a pretreatment is required for its efficient hydrolysis. In this article,
we describe the results using various chemicals such as dilute H2SO4, HCl, and NaOH separately as well as consecutively under relative mild conditions (120°C, 1h). Pretreatment with 5% H2SO4 or 5% HCl solubilized 85% of the hemicellulose fraction, but the enzymatic conversion of pretreated materials increased only
two times compared to the untreated corn stover. Applying acidic pretreatment following a 1-d soaking in base achieved enzymatic
conversion that was nearly the theoretical maximum (95.7%). Pretreatment with 10% NaOH decreased the lignin fraction >95%,
increased the enzymatic conversion more than four times, and gave a 79.4% enzymatic conversion. However, by increasing the
reaction time, the enzymatic degradability could also be increased significantly, using a less concentrated base. When the
time of pretreatment was increased three times (0.5% NaOH at 120°C), the amount of total released sugars was 47.9 g from 100
g (dry matter) of untreated corn stover. 相似文献
17.
Radiation and chemical pretreatment of cellulosic waste 总被引:7,自引:0,他引:7
Rahayu Chosdu Nazly Hilmy Erizal Erlinda T. B. Abbas B. 《Radiation Physics and Chemistry》1993,42(4-6):695-698
RADIATION AND CHEMICAL PRETREATMENT OF CELLULOSIC WASTE. Combination pretreatment of cellulosic wastes such as corn stalk, cassava bark and peanut husk were studied using chemical and irradiation of electron beam. The effect of 2 % NaOH and irradiation at the doses of 100, 300 and 500 kGy on the cellulosic wastes were evaluated by measurement of the glucose yield in enzymatic hydrolysis. Irradiation was carried out with an electron beam machine EPS-300 (Energy 300 kev, current 50 mA). The result shows that the glucose yield were higher by increasing of dose irradiation and treated with 2 % of NaOH especially in corn stalk. The glucose yield of corn stalk were 20 % in untreated samples and increases to 43 % after treated with electron beam irradiation at the dose of 500 kGy and 2 % NaOH. Cassava bark and peanut husk show the glucose yield are only 3.5, and 2.5% respectively. The effect of E-beam current in enzymatic hydrolysis of corn stalk, and preliminary studied E-beam radiation pretreatment of cassava bark are also reported. 相似文献
18.
Damo M. Yourchisin G. Peter Van Walsum 《Applied biochemistry and biotechnology》2004,115(1-3):1073-1086
This research quantified the enzymatic digestibility of the solid component and the microbial inhibition of the liquid component
of pretreated aspen wood and cornstover hydrolysates. Products of liquid hot water and carbonic acid pretreatment were compared.
Pretreatment temperatures tested ranged from 180 to 220°C, and reaction times were varied between 4 and 64 min. Both microbial
inhibition rates and enzymatic hydrolysis rates showed no difference between pretreatments containing carbonic acid and those
not containing no carbonic acid. Microbial inhibition increased as the reaction severity increased, but only above a midpoint
severity parameter of 200°C for 16 min. Both the rates and yields of enzymatic hydrolysis displayed an increase from the lowest
tested reaction severity to the highest tested reaction severity. 相似文献
19.
Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation 总被引:2,自引:0,他引:2
The hydrolysis process on corncob residue was catalyzed synergetically by the cellulase from Trichoderma reesei and the immobilized cellobiase. The feedback inhibition to cellulase reaction caused by the accumulation of cellobiose was
eliminated efficiently. The hydrolysis yield of corncob residue was 82.5%, and the percentage of glucose in the reducing sugar
reached 88.2%. The glucose in the cellulosic hydrolysate could be converted into lactic acid effectively by the immobilized
cells of Lactobacillus delbrueckii. When the enzymatic hydrolysis of cellulose and the fermentation of lactic acid were coupled together, no glucose was accumulated
in the reaction system, and the feedback inhibition caused by glucose was also eliminated. Under the batch process of synergetic
hydrolysis and lactic acid fermentation with 100 g/L of cellulosic substrate, the conversion efficiency of lactic acid from
cellulose and the productivity of lactic acid reached 92.4% and 0.938 g/(L·h), respectively. By using a fed-batch technique,
the total concentration of cellulosic substrate and lactic acid in the synergetic process increased to 200 and 107.5 g/L,
respectively, whereas the dosage of cellulase reduced from 20 to 15 IU/g of substrate in the batch process. The results of
the bioconversion of renewable cellulosic resources were significant. 相似文献
20.
Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility 总被引:5,自引:0,他引:5
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most
abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn
stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network
of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40%
of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes
the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time,
and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated
material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars,
56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion
was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained
with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the
glucose to ethanol efficiently. 相似文献