首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
三维应力下热破裂对花岗岩渗流规律影响的试验研究   总被引:1,自引:1,他引:0  
 采用“20 MN高温高压岩体三轴试验机”,精心设计4块完整花岗岩岩样。在25和75 MPa静水应力条件下,实时测试花岗岩岩样在热破裂作用下的渗流规律,这是国内目前首次对花岗岩在高温三维应力作用下渗流规律的实时试验研究。试验结果表明:(1) 在三维应力条件下,花岗岩发生热破裂。在热破裂升温过程中,花岗岩岩样的渗透率随温度的升高而表现为正指数增大的规律。(2) 在热破裂作用初期,花岗岩岩样渗透率随温度的增加而缓慢增加。在热破裂作用的后期,花岗岩岩样渗透率随温度的升高而急剧升高直至达到渗透率峰值。(3) 在整个热破裂升温过程中,各花岗岩岩样渗透率随温度升高而不断增加,渗透率变化率随温度的升高而不断加速。(4) 在静水应力和热破裂作用下,花岗岩岩样的渗透率峰值和初始值的比值最高可达93倍,其渗透率的变化率最高达3.5×10-4 mD/℃,热破裂作用极大地增强花岗岩的渗透特性。试验得到的数据和结论对高温岩体地热开发、石油二次开采及煤炭地下气化具有重要的意义。  相似文献   

2.
三维应力作用下单一裂缝渗流规律的理论与试验研究   总被引:5,自引:5,他引:5  
针对目前国内外在岩石力学学科中争议较大的关于岩体裂缝的渗透系数是否受侧向应力的影响这一焦点问题进行了深入的研究。建立了单一裂缝岩体在三维应力作用下的物理模型和严密的关系方程,推导出渗透系数计算公式,并对该公式进行了大量的三轴试验数据的验证。其简化后的仅在法向应力作用下的渗透系数计算公式,与已有的计算公式一致。分析后得出结论:裂缝侧向应力引起的裂缝侧向变形对其裂缝渗流有重要的影响,其影响规律同样是负指数规律。  相似文献   

3.
基于三维数字图像相关技术,采用可视化三轴压缩伺服控制试验系统,开展孔隙水压–应力耦合作用下砂岩应力松弛特性试验研究。结果表明:(1)径向应变场中局部微裂纹损伤发育并相互贯通是引起脆性岩石应力松弛时效失稳破坏的主控因素。(2)松弛应力水平位于岩石微裂纹稳定发育和微裂纹不稳定发育阶段时,孔隙水压的增加,能显著提高岩石的应力松弛量和径向应变变化量,缩短岩石时效破坏寿命。(3)松弛破坏试样应力–时间曲线和径向应变–时间曲线呈“阶梯式”变化趋势,及两者的速率–时间曲线呈现“漏斗形”演化趋势,其实质均反映了岩石应力松弛过程中微裂纹损伤发育扩展和相互贯通。(4)松弛破坏试样破裂面裂纹发育以沿晶裂纹为主,且相互之间汇集、贯通,胶结基质破碎严重,胶结结构丧失,脆性岩石应力松弛时效破坏实质是受裂纹发育扩展所控制。  相似文献   

4.
利用最新研制的中低压多功能CT机配套专用渗流试验装置,分别对干燥砂岩试样和渗流砂岩试样进行了三维应力状态下的实时CT观测,根据试验结果初步讨论了砂岩裂隙隙宽变化与CT数变化的相关关系,并提出了裂隙隙宽的计算公式。  相似文献   

5.
温度对砂岩损伤影响试验研究   总被引:3,自引:1,他引:3  
 以砂岩试件为研究对象,研究该批试件高温前后的均匀性、高温后的超声波传播规律及孔隙率变化规律。通过研究高温后砂岩的超声波速变化、孔隙率变化规律,得到了温度对砂岩损伤的影响规律。结果表明,除温度为200 ℃时,超声波速略有升高外,随着砂岩经历温度的升高,超声波在其内部的传播速度逐渐降低,孔隙率随经历温度的升高而逐渐变大;这两个事实都说明砂岩经历高温后内部产生了损伤。建立了超声波速与损伤因子的关系,并且得到该砂岩随经历温度的升高损伤因子逐渐增大的规律。  相似文献   

6.
裂隙岩体渗流与三维应力耦合的理论与实验研究   总被引:3,自引:0,他引:3  
围绕裂隙岩体渗流与应力之间的关系问题,从理论出发,经过合理的建模和严密的推演,得出裂隙岩体渗流与三维应力的耦合方程。该方程经过了大量的三轴实验数据的验证,解决了裂隙岩体受到的侧向应力对其渗流是否有影响这一岩石力学学科中争议很大的问题。指出了裂隙侧向应力引起的裂隙侧向变形是影响裂隙岩体渗流的主要因素,其影响符合负指数规律。同时,还分析了裂隙组的渗流问题。  相似文献   

7.
针对传统宏观孔渗关系难以准确预测储层砂岩渗透特性的问题,采用核磁共振耦合实时渗流系统,从细观角度阐述了渗透过程中砂岩孔隙结构变化规律,定量分析了多尺度孔隙压缩系数对渗透特性的影响,进而提出了一种考虑多尺度孔隙压缩系数的砂岩渗透率计算方法。结果表明:(1)不同应力条件对多尺度孔隙作用机制不同,围压增大导致大孔隙明显闭合,而渗压增大促使小孔隙发育扩展;(2)考虑多尺度孔隙压缩系数的砂岩渗透率计算方法与试验结果拟合更好。  相似文献   

8.
 制备含水饱和度为0%~70%的砂岩岩样,利用低渗透岩石气体渗透测试装置,对不同含水饱和度的砂岩岩样进行气渗试验,测量其在不同围压和渗压下的渗透率以及对应围压下的孔隙度,分析和讨论不同含水饱和度低渗透砂岩渗透率、孔隙度与应力三者之间的关系。得到以下结论:含水饱和度低于50%的低渗透砂岩,其气测渗透率随孔隙压力的增大而减小,含水饱和度高于50%的低渗透砂岩,其气测渗透率的变化规律相反;气测渗透率与孔隙压力符合指数函数关系;随着含水饱和度的增大,气测渗透率对孔隙压力变化的敏感性减少,且气测渗透率对孔隙压力变化的敏感性随着孔隙压力的增大而增大;绝对渗透率、孔隙度与围压均呈指数函数关系;随着含水饱和度的增大,绝对渗透率对围压变化的敏感性增大,对孔隙度变化的敏感性减小,且绝对渗透率和孔隙度对围压变化的敏感性均是随着围压增大而减小;低渗透砂岩的孔隙度与其绝对渗透率的变化成正相关,孔隙度的少量降低即能引起其绝对渗透率的大幅度下降;绝对渗透率与孔隙度成指数函数关系;随着含水饱和度增大,绝对渗透率对孔隙度变化的敏感性增强,且随着孔隙度的增大,绝对渗透率对孔隙度变化的敏感性也逐渐增强。  相似文献   

9.
《Planning》2014,(4):154-161
膝状挠曲破碎带是一些水电站坝基的主要工程地质问题。破碎带岩性为完整性较差的软弱砂岩,直接关系到坝基的变形和稳定。基于破碎带砂岩组织结构疏松、含水率较高、物理力学性能较差等特点,对渗流-应力耦合作用下流变过程中的岩石渗透特性进行测试。分析应力-应变过程中的渗透规律,研究流变过程中渗透系数演化规律,探讨渗透性演化破坏机制。得到轴向、环向和体积变形对渗透系数的影响及围压和孔隙压力对渗透特性的影响规律。结果表明:初始加载导致渗透系数快速减小,并随着非线性变形增加降低程度逐步趋缓;且环向变形比轴向变形更能灵敏地反映渗透系数演化规律;岩样非均质性引起孔隙度略有不同,加载作用导致渗透系数随时间变化存在部分波动,但整体呈线性降低;稳态流变阶段渗透系数恢复至平缓下降,说明波动对渗透系数的整体演化无显著影响,且围压增加导致渗透系数降低。  相似文献   

10.
渗流状态下砂岩的三维实时CT观测   总被引:2,自引:1,他引:2  
利用中低压多功能CT专用渗流实验装置,进行了三维应力状态下砂岩的渗流实时CT观测试验研究。为使试验具有对比性,分别进行干燥试样的常规三轴试验和渗流三轴试验的CT实时观测,取得了渗流对岩石损伤演化规律影响的初步成果。根据试验过程的应力–应变曲线,提出试样强度和变形折减率的计算公式;分析了干燥试样和渗透试样CT数与应力的相关关系;提出了确定裂缝宽度的像素量测法;提出根据测区平均CT数与测区面积的相关关系来确定裂缝宽度的数值计算方法。  相似文献   

11.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设各对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

12.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设备对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

13.
温度围压对低渗透砂岩孔隙度和渗透率的影响研究   总被引:2,自引:0,他引:2  
 对低孔、高孔两组低渗透砂岩岩心孔隙度和渗透率在温度压力共同作用下的变化特征进行试验研究。在围压5 MPa、温度25 ℃的条件下,第一组砂岩的孔隙度变化范围为3.2%~4.6%,渗透率为0.098 8×10-3~0.191 9× 10-3 μm2;第二组砂岩的孔隙度变化范围为12.8%~14.2%,渗透率为0.176 7×10-3~0.301 3×10-3 μm2。研究结果表明,在试验采用的温度、压力变化范围(25 ℃~80 ℃,5~55 MPa)内,两组低渗透砂岩的孔隙度、渗透率都表现出了较强的压力、温度敏感性。随温度、围压升高,孔隙度、渗透率都减小,围压对渗透率的影响明显高于温度对渗透率的影响。总的趋势看,温度对孔隙度的影响高于围压对孔隙度的影响,恒定测量围压5 MPa,温度由25 ℃升高到80 ℃,低孔低渗砂岩孔隙度下降了34.7%,渗透率下降了75.1%;高孔低渗砂岩孔隙度降低了18.4%,渗透率下降了35.2%;恒定测量温度25 ℃,围压由5 MPa升高到55 MPa,低孔低渗砂岩孔隙度降低32.3%,渗透率下降了89.5%,高孔低渗砂岩孔隙度降低了4.6%、渗透率降低了77.4%。  相似文献   

14.
含密实原岩充填物的宜昌砂岩裂隙渗流试验研究   总被引:2,自引:1,他引:2  
 鉴于有无填充物条件下岩体裂隙渗流规律巨大差异,以及工程岩体中大量渗流裂隙为原岩破碎物填充的剪切滑移裂隙,研究加载路径、轴压、围压、裂隙深度、原岩充填物粒径等因素对渗流量的影响对岩质边坡渗流参数的选取及稳定性判别。针对带人工切割裂纹的宜昌地区砂岩裂隙渗流开展试验研究,得到如下结论:(1) 填充砂粒在没有冲紧密实之前,不但受到轴压的加载路径影响,还受到围压的加载路径影响,其渗流量测量数据是没有可重复性的。经过4次以上围压轴压加卸循环后,渗流数据趋于稳定,具有可重复性。(2) 裂隙深度小于2.5 cm时,含密实充填物的裂隙渗流量与轴压的关系大致呈线性;裂隙深度达到2.5 cm后,两者为非线性关系,这主要是裂隙深度增大导致砂粒位置和结构的改变可能性增大造成。(3) 对有充填裂隙岩体,围压影响显著,而对开度较大的无充填的裂隙,围压对渗流量的影响极小,这是因为围压造成的岩体形变量对于开度较大的裂隙过水断面而言量级过小造成。(4) 轴压小于0.03 MPa或围压小于1 MPa时,填充物粒度对渗流量影响呈无序性;轴压大于0.03 MPa且围压大于1 MPa时,砂粒度越大,对应的渗流量就越大,此时,轴压越大,填充物粒度对渗流量的影响越显著,随着围压的增长,3种不同粒度对应的流量保持的大小关系和相互比例趋于稳定。  相似文献   

15.
砂岩水物理化学损伤机制研究   总被引:7,自引:2,他引:7  
通过对不同水环境下砂岩孔隙率、pH值演变和矿物蚀变等开展一系列的试验研究,从微细观层次分析砂岩的水物理化学损伤机制,在此基础上,提出以蒸馏水环境下测得的次生孔隙率为基础,从总次生孔隙率中将水化学作用产生的次生孔隙率分离出来的方法,进而建立基于次生孔隙率变化的砂岩水物理化学损伤变量表达式;另一方面,通过对浸泡180 d时的砂岩试件进行CT扫描,将损伤计算结果与CT检测结果进行了对比分析.研究结果表明,砂岩水物理损伤主要受水流导致的矿物颗粒间胶结物与碎屑运移和扩散影响,与水化学损伤与离子浓度、pH值等水环境变化密切相关;二者所诱发的次生空隙是水物理化学作用影响砂岩力学性质的主要原因;水-岩反应后某一时刻砂岩的总次生孔隙率可由水物理作用和水化学作用产生的次生孔隙率两部分构成.砂岩水物理化学损伤计算结果与CT检测结果的对比分析表明,采用所提出的砂岩损伤变量表达式来描述其水物理化学损伤是可行的.  相似文献   

16.
基于介质骨架、固体颗粒以及水是可压缩的这一假设,推导出饱和的渗流应力耦合控制方程组。采用加权残值法对耦合方程组进行有限元离散,并推导相应的弹塑性矩阵。对耦合计算中的渗透系数分形模型展开讨论,综述采用分形维描述多孔介质和裂隙介质渗透系数方面研究的进展。最后,在给出的固结算例中采用一个较为实用的分形渗透系数模型,该模型可模拟渗透系数随介质变形而变化。数值计算的结果显示出良好的规律性,可以提高对耦合试验观测现象的理解。  相似文献   

17.
低渗透岩石渗透率对有效应力敏感系数的试验研究   总被引:12,自引:5,他引:12  
低渗透岩石渗流过程中存在明显的流固耦合效应,采用FDES–641驱替评价系统对采自长庆油田的砂岩岩样进行试验和分析以研究低渗透岩石渗透率与有效应力之间的关系。试验结果表明,岩石渗透率随着有效应力的增加而呈现规律性减小。但鉴于影响岩石渗透率的渗流耦合因素很复杂,可以通过定义渗透率对有效应力的敏感系数从而将影响因素进行归一化处理。敏感系数可以反映出岩石渗透率随有效应力的变化趋势。根据试验结果建立敏感系数与有效应力之间的函数关系,从而把求取在不同有效应力下岩石渗透率的值转化为对其敏感系数的确定,并据此推导岩样渗透率与有效应力的函数关系式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号