首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD is a critical cofactor for the oxidation of fuel molecules. The exposure of human PBL to agents that cause DNA strand breaks to accumulate can deplete NAD pools by increasing NAD consumption for poly(ADP-ribose) formation. However, the pathways of NAD synthesis and degradation in viable PBL have not been carefully documented. The present experiments have used radioactive labeling techniques to trace the routes of NAD metabolism in resting PBL. The cells could generate NAD from either nicotinamide or nicotinic acid. PBL incubated with [14C]nicotinic acid excreted [14C]nicotinamide into the medium. Approximately 50% of a prelabeled [14C]NAD pool was metabolized during 6 to 8 hr in tissue culture. Basal NAD turnover was prolonged threefold to fourfold by 3-aminobenzamide (3-ABA), an inhibitor of poly(ADP-ribose) synthetase. Supplementation of the medium with 3-ABA also prevented the accelerated NAD degradation that ensued after exposure of PBL to deoxyadenosine plus deoxycoformycin at concentrations previously shown to cause DNA strand break accumulation. These results demonstrate that quiescent human PBL continually produce NAD and utilize the nucleotide for poly(ADP-ribose) synthesis.  相似文献   

2.
Zinc ions exert an inhibitory effect on Ca(2+)Mg(2+)-dependent endonuclease which is supposed to be responsible for the fragmentation of DNA during apoptosis. In the experimental system we used, that is HeLa cells treated with VP-16, the protection from internucleosomal DNA degradation is modulated by Zn concentration and appears to be dependent on the time after treatment. This effect does not prevent cell death or occurrence of apoptotic parameters, suggesting that DNA ladder appearance is not a crucial event in apoptosis. The activation of poly(ADP-ribose)polymerase following the administration of VP-16, is not observed in cells in which DNA fragmentation has been abolished by zinc, supporting the hypothesis that this event is regulated by the appearance of small-sized DNA fragments.  相似文献   

3.
4.
Initiation of poly(ADP-ribosyl) histone synthesis was achieved in vitro using an apparently homogeneous preparation of poly(ADP-ribose) synthetase. When poly(ADP-ribose) was synthesized in the presence of DNA and increase amounts of histone H1, increasing portions (up to about 55%) of the product were found associated with the histone, judging from solubility in 5% HClO4 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Most of the polymers were directly attached to the histone protein and not produced by elongation from pre-existing ADP-ribose; the cohesive end of poly(ADP-ribose), isolated as ribose 5-phosphate with snake venom phosphodiesterase digestion, was labeled almost quantitatively with [ribose (NMN)-14C]NAD. The poly(ADP-ribose) . histone linkage was labile in mild alkali and neutral NH2OH, suggesting that the same bond, probably ester, was formed in this system as in crude chromatin or isolated nuclei. Elongation of a histone-bound monomer into a polymer by this enzyme was previously demonstrated (Ueda, K., Kawaichi, M., Okayama, H., and Hayaishi, O. (1979) J. Biol. Chem. 254, 679-687), but initiation of ADP-ribose chains on histone has never been shown with a purified enzyme. This appeared to be due to the low concentrations of histone so far used. These findings indicated that a single enzyme catalyzes two different types of reaction, i.e. an attachment of ADP-ribose to histone and its elongation into a polymer.  相似文献   

5.
Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-kappaB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.  相似文献   

6.
Oxygen enhances in vivo myocardial synthesis of poly(ADP-ribose)   总被引:1,自引:0,他引:1  
In vivo synthesis of poly(ADP-ribose) is demonstrated in cultured chick embryo heart cells. Cells grown with (14C) ribose incorporate 28 – 31% more radioactivity into poly(ADP-ribose) in 20% O2 (in which they divide more slowly) than in 5% O2. Reaction product was identified as poly(ADP-ribose) by its insensitivity to various enzymes and by its digestion with snake venom phosphodiesterase to phosphoribosyl-AMP and AMP. Poly(ADP-ribose) glycohydrolase activity was similar in 20% and 5% O2. Thus, both poly(ADP-ribose) polymerase activity (shown in an earlier study) and poly(ADP-ribose) increase in cells growing more slowly in 20% vs 5% O2. These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart cell division by O2.  相似文献   

7.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

8.
9.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution.  相似文献   

10.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

11.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

12.
Imatinib targets Bcr-Abl, the causative event of chronic myelogenous leukemia (CML), and addresses leukemic cells to growth arrest and cell death. The exact mechanisms responsible for imatinib-induced cell death are still unclear. We investigated the role of poly(ADP-ribose) polymerase (PARP) activity in imatinib-induced cell death in Bcr-Abl-positive cells. Imatinib leads to a rapid increase of poly(ADP-ribosyl)ation (PAR) preceding loss of integrity of mitochondrial membrane and DNA fragmentation. The effect of imatinib on PAR can be mimicked by inhibition of phosphatidylinositol 3-kinase (PI3-K) implicating a central role of the PI3-K pathway in Bcr-Abl-mediated inhibition of PAR. Importantly, inhibition of PAR in imatinib-treated cells partially prevented cell death to an extent comparable to that observed after caspase inhibition. Simultaneous blockade of both caspases and PAR revealed additive cytoprotective effects indicating that both pathways function in parallel. In conclusion, our results suggest that in addition to the well-documented caspase-dependent pathway, imatinib also induces a PARP-mediated death process.  相似文献   

13.
Angiotensin II (AII) contributes to the pathogenesis of many cardiovascular disorders. Oxidant-mediated activation of poly(adenosine diphosphate-ribose) polymerase (PARP) plays a role in the development of endothelial dysfunction and the pathogenesis of various cardiovascular diseases. We have investigated whether activation of the nuclear enzyme PARP contributes to the development of AII-induced endothelial dysfunction. AII in cultured endothelial cells induced DNA single-strand breakage and dose-dependently activated PARP, which was inhibited by the AII subtype 1 receptor antagonist, losartan; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin; and the nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester. Infusion of sub-pressor doses of AII to rats for 7 to 14 d induced the development of endothelial dysfunction ex vivo. The PARP inhibitors PJ34 or INO-1001 prevented the development of the endothelial dysfunction and restored normal endothelial function. Similarly, PARP-deficient mice infused with AII for 7 d were found resistant to the AII-induced development of endothelial dysfunction, as opposed to the wild-type controls. In spontaneously hypertensive rats there was marked PARP activation in the aorta, heart, and kidney. The endothelial dysfunction, the cardiovascular alterations and the activation of PARP were prevented by the angiotensin-converting enzyme inhibitor enalapril. We conclude that AII, via AII receptor subtype 1 activation and reactive oxygen and nitrogen species generation, triggers DNA breakage, which activates PARP in the vascular endothelium, leading to the development of endothelial dysfunction in hypertension.  相似文献   

14.
In the present study D. discoideum has been used as a model organism to understand the role of poly (ADP-ribose) polymerase (PARP) in caspase independent paraptotic cell death pathways. D. discoideum lacks caspases and Bcl-2 family proteins; nevertheless it has 9 potential genes for PARP. PARP has been known to get activated in various cell death associated diseases. In this study kinetics of cell death induced by staurosporine (STS), a bacterial alkaloid, was established to unravel the role of PARP. It was found that STS induced cell death in D. discoideum did not involve PARP activation, however it involved cathepsin D. Results indicated that an alternative mechanism may be existing in D. discoideum that lacks Bcl-2 family proteins for STS induced cell death that evades Bax involvement.  相似文献   

15.
The emerging role of poly(ADP-ribose) polymerase-1 in longevity   总被引:3,自引:0,他引:3  
In the present paper, the involvement of the family of poly(ADP-ribose) polymerases (PARPs), and especially of PARP-1, in mammalian longevity is reviewed. PARPs catalyse poly(ADP-ribosyl)ation, a covalent post-translational protein modification in eukaryotic cells. PARP-1 and PARP-2 are activated by DNA strand breaks, play a role in DNA base-excision repair (BER) and are survival factors for cells exposed to low doses of ionising radiation or alkylating agents. PARP-1 is the main catalyst of poly(ADP-ribosyl)ation in living cells under conditions of DNA breakage, accounting for about 90% of cellular poly(ADP-ribose). DNA-damage-induced poly(ADP-ribosyl)ation also functions as a negative regulator of DNA damage-induced genomic instability. Cellular poly(ADP-ribosyl)ation capacity in permeabilised mononuclear blood cells (MNC) is positively correlated with life span of mammalian species. Furthermore PARP-1 physically interacts with WRN, the protein deficient in Werner syndrome, a human progeroid disorder, and PARP-1 and WRN functionally cooperate in preventing carcinogenesis in vivo. Some of the other members of the PARP family have also been revealed as important regulators of cellular functions relating to ageing/longevity. In particular, tankyrase-1, tankyrase-2, PARP-2 as well as PARP-1 have been found in association with telomeric DNA and are able to poly(ADP-ribosyl)ate the telomere-binding proteins TRF-1 and TRF-2, thus blocking their DNA-binding activity and controlling telomere extension by telomerase.  相似文献   

16.
Cytotoxic T cells and NK cells will acquire features of apoptosis when exposed to oxygen radicals, but the molecular mechanisms underlying this phenomenon are incompletely understood. We have investigated the role of two enzyme systems responsible for execution of cell death, caspases and the poly(ADP-ribose) polymerase (PARP). We report that although human cytotoxic lymphocytes were only marginally protected by caspase inhibitors, PARP inhibitors completely protected lymphocytes from radical-induced apoptosis and restored their cytotoxic function. The radical-induced, PARP-dependent cell death was accompanied by nuclear accumulation of apoptosis-inducing factor and a characteristic pattern of large-fragment DNA degradation. It is concluded that the PARP/apoptosis-inducing factor axis is critically involved in oxygen radical-induced apoptosis in cytotoxic lymphocytes.  相似文献   

17.
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.  相似文献   

18.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

19.
Oxidative stress-induced cell death is common in many neurological diseases. However, the role of poly(ADP-ribose) polymerase-1-induced cell death (parthanatos) has not been fully elucidated. Here, we found that hydrogen peroxide (H2O2) could lead to PARP-1 activation and apoptosis-inducing factor nuclear translocation in a concentration dependent manner. Iduna, as a novel regulator of parthanatos, was also induced by H2O2. Down-regulation of Iduna by genetic ablation promoted H2O2-induced cell damage. Up-regulation of Iduna reduced the loss of mitochondrial potential and ATP and NAD + production, but did not affect the mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio, and Caspase-9/Caspase-3 activity. In contrast, overexpression of Iduna inhibited activation of PARP-1 and nuclear translocation of AIF. Further study showed that PARP-1 specific inhibitor, DPQ, blocked the protective effect of Iduna against H2O2-induced oxidative stress. Moreover, in the presence of proteasome inhibitor (MG-132) or ubiquitin E1 inhibitor (PYR-41), protective effect of Iduna was significantly weaken. These results indicate that Iduna acts as a potential antioxidant by improving mitochondrial function and inhibiting oxidative stress-induced parthanatos, and these protective effects are dependent on the involvement of ubiquitin–proteasome system.  相似文献   

20.
Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号