首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage apoptosis is a prominent feature of advanced atherosclerotic plaques. Here, we examined the hypothesis that the apoptotic machinery is regulated by microRNA-155 (miR-155). Constitutive expression of miR-155 was detected in RAW264.7 cells, which was increased following stimulation with oxidized low-density lipoprotein (OxLDL) in a dose- and time-dependent manner. OxLDL-treated RAW264.7 cells showed a marked time- and dose-dependent increase in apoptosis, which was suppressed in the presence of mimics and increased with antagonists of miR-155. Bioinformatics analysis revealed Fas-associated death domain-containing protein (FADD) as a putative target of miR-155. Luciferase reporter assay and Western blot further disclosed that miR-155 inhibits FADD expression by directly targeting the 3′-UTR region. We propose that miR-155 attenuates the macrophage apoptosis, at least in part, through FADD regulation, since forced expression of FADD blocked the ability of miR-155 to inhibit apoptosis. Our results collectively suggest that miR-155 attenuates apoptosis of OxLDL-mediated RAW264.7 cells by targeting FADD, supporting a possible therapeutic role in atherosclerosis.  相似文献   

2.
The truncated phospholipids 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are oxidation products of 1-palmitoyl-2-arachidonoyl phosphatidylcholine. Depending on concentration and the extent of modification, these compounds induce growth and death, differentiation and inflammation of vascular cells thus playing a role in the development of atherosclerosis. Here we describe the import of fluorescent POVPC and PGPC analogs into cultured RAW 264.7 macrophages and the identification of their primary protein targets. We found that the fluorescent oxidized phospholipids were rapidly taken up by the cells. The cellular target sites depended on the chemical reactivity of these compounds but not on the donor (aqueous lipid suspension, albumin or LDL). The great differences in cellular uptake of PGPC and POVPC are a direct consequence of the subtle structural differences between both molecules. The former compound (carboxyl lipid) can only physically interact with the molecules in its immediate vicinity. In contrast, the aldehydo-lipid covalently reacts with free amino groups of proteins by forming covalent Schiff bases, and thus becomes trapped in the cell surface. Despite covalent binding, POVPC is exchangeable between (lipo)proteins and cells, since imines are subject to proton-catalyzed base exchange. Protein targeting by POVPC is a selective process since only a limited subfraction of the total proteome was labeled by the fluorescent aldehydo-phospholipid. Chemically stabilized lipid-protein conjugates were identified by MS/MS. The respective proteins are involved in apoptosis, stress response, lipid metabolism and transport. The identified target proteins may be considered primary signaling platforms of the oxidized phospholipid.  相似文献   

3.
We examined the effects of chitosan oligosaccharides (COSs) with different molecular weights (COS-A, 10 kDa < MW < 20 kDa; COS-C, 1 kDa < MW < 3 kDa) on the lipopolysaccharide (LPS)-induced production of prostaglandin E2 and nitric oxide and on the expression of cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 macrophages. COS-A (0.4%) and COS-C (0.2%) significantly inhibited PGE2 production in LPS-stimulated macrophages without cytotoxicity. The effect of COS-A and COS-C on COX-2 expression in activated macrophages was also investigated by immunoblotting. The inhibition of PGE2 by COS-A and COS-C can be attributed to the blocking of COX-2 protein expression. COS-A (0.4%) and COS-C (0.2%) also markedly inhibited the LPS-induced NO production of RAW 264.7 cells by 50.2% and 44.1%, respectively. The inhibition of NO by COSs was consistent with decreases in inducible nitric oxide synthase (iNOS) protein expression. To test the inhibitory effects of COS-A and COS-C on other cytokines, we also performed ELISA assays for IL-1β in LPS-stimulated RAW 264.7 macrophage cells, but only a dose-dependent decrease in the IL-1β production exerted by COS-A was observed. In order to test for irritation and the potential sensitization of COS-A and COS-C for use as cosmetic materials, human skin primary irritation tests were performed on 32 volunteers; no adverse reactions of COSs usage were observed. Based on these results, we suggest that COS-A and COS-C be considered possible anti-inflammatory candidates for topical application.  相似文献   

4.
S-Nitrosothiols have been suggested to be mediators of many nitric oxide-dependent processes, including apoptosis and vascular relaxation. Thiol nitrosation is a poorly understood process in vivo, and the mechanisms by which nitric oxide can be converted into a nitrosating agent have not been established. There is a discrepancy between the suggested biological roles of nitric oxide and its known chemical and physical properties. In this study, we have examined the formation of S-nitrosothiols in lipopolysaccharide-treated RAW 264.7 cells. This treatment generated 17.4 +/- 1.0 pmol/mg of protein (means +/- SE, n =27) of intracellular S-nitrosothiol that slowly decayed over several hours. S-Nitrosothiol formation depended on the formation of nitric oxide and not on the presence of nitrite. Extracellular thiols were nitrosated by cell-generated nitric oxide. Oxygenated ferrous hemoglobin inhibited the formation of S-nitrosothiol, indicating the nitrosation occurred more slowly than diffusion. We discuss several mechanisms for S-nitrosothiol formation and conclude that the nitrosation propensity of nitric oxide is a freely diffusible element that is not constrained within an individual cell and that both nitric oxide per se and nitric oxide-derived nitrosating agents are able to diffuse across cell membranes. To achieve intracellular localization of the nitrosation reaction, mechanisms must be invoked that do not involve the formation of nitric oxide as an intermediate.  相似文献   

5.
The molecular signaling events leading to protection from oxidative stress-induced apoptosis upon contact inhibition have not been fully investigated. Previous research has indicated a role for mitogen-activated protein kinases (MAPKs) in the regulation of contact inhibition, and these proteins have also been associated with cell cycle regulation and stress-induced apoptosis. The potential role of the MAPK JNK-1 in the stress-response of actively proliferating and contact-inhibited cells was investigated. Actively proliferating normal fibroblasts (BJ) and fibrosarcoma cells (HT-1080) were stressed with H2O2, and levels of activated JNK-1 and cleaved PARP were ascertained. Similarly, these results were compared with levels of activated JNK-1 and cleaved PARP detected in H2O2-stressed confluent fibrosarcoma or contact-inhibited fibroblast cells. Contact-inhibited fibroblasts were protected from apoptosis in comparison to subconfluent fibroblasts, concurrent with decreased JNK-1 activation. Increased culture density of fibrosarcoma cells was not protective against apoptosis, and these cells did not demonstrate density-dependent alterations in the JNK-1 stress response. This decreased activation of JNK-1 in stressed, contact-inhibited cells did not appear to be dependent upon increased expression of MKP-1; however, over-expression of MKP-1 was sufficient to result in a slight decrease in H2O2-stimulated PARP cleavage. Increasing the antioxidant capacity of fibroblasts through NAC-treatment not only lessened H2O2-stimulated JNK-1 activation, but also did not influence the expression of MKP-1. Taken together, these results suggest that regulation of negative regulation of JNK-1 upon contact inhibition is protective against apoptosis, and that this regulation is independent of MKP-1.  相似文献   

6.
7.
8.
A20 was originally characterized as a TNF-inducible gene in human umbilical vein endothelial cells. As an NF-kappaB target gene, A20 is also induced in many other cell types by a wide range of stimuli. Expression of A20 has been shown to protect from TNF-induced apoptosis and also functions via a negative-feedback loop to block NF-kappaB activation induced by TNF and other stimuli. To date, there are no reports on whether A20 can protect OxLDL-induced apoptosis in macrophages. For the first time we report that A20 expression blocks OxLDL-mediated cell toxicity and apoptosis. OxLDL induced the expression of Fas and FasL, and the subsequent caspase-8 cleavage and treatment with a neutralizing ZB4 anti-Fas antibody blocked apoptosis induced by OxLDL. Expression of dominant negative FADD efficiently prevented OxLDL-induced apoptosis and caspase-8 activation. A20 expression significantly attenuated the increased expression of Fas and FasL, and Fas-mediated apoptosis. These findings suggest that A20-mediated protection from OxLDL may occur at the level of Fas/FADD-caspase-8 and be FasL dependent. Treatment of RAW264.7 cells with OxLDL induces a series of time-dependent events, including the release of cytochrome c, Smac and Omi from the mitochondria to the cytosol, activation of caspase-9, -6, -2, and -3, which are blocked by A20 expression. No cleaved form of Bid was detected, even treatment with OxLDL for 48 h. Expression of dominant negative FADD also efficiently prevented OxLDL-induced the above apoptotic events. The release of cyto c, Smac and Omi from mitochondria to cytosol, activated by OxLDL treatment, and the activation of caspase-9 may not be a downstream event of caspase-8-mediated Bid cleavage. Therefore, the protective effect of A20 on mitochondrial apoptotic pathway activated by OxLDL may be dependent on FADD. A20 expression reversed OxLDL-mediated G(0)/G(1) stage arrest by maintaining the expression of cyclin B1, cyclin D1, and cyclin E, and p21 and p73. Thus, A20 expression blocks OxLDL-mediated apoptosis in murine RAW264.7 macrophages through disrupting Fas/FasL-dependent activation of caspase-8 and the mitochondria pathway.  相似文献   

9.
Present study was performed to assess the effect of curcumin treatment on macrophage functions using RAW264.7 cells, a murine macrophage cell line. Phagocytic activity of RAW264.7 cells was enhanced by the treatment with curcumin for 48 h while the nitric oxide synthesis from RAW264.7 cells following lipopolysaccharide exposure was blocked. The incubation of RAW264.7 cells with curcumin dose-dependently inhibited the stimulatory responses of macrophage triggered by lipopolysaccharide; the enhanced secretion of inflammatory cytokines such as TNF-α and IL-1β and the up-regulated expression of surface antigens like CD14 and CD40. Curcumin alone, however, was able to increase the basal level of TNF-α secretion and elevated markedly the expression of CD14 and slightly CD40. The marked enhancement of both phagocytic activity and CD14 was detectable as early as 75 min after curcumin treatment which is the minimum time period required for the phagocytosis and CD14 measurement, suggesting a signaling pathway distinct from that triggered by apoptotic cells. In conclusion, this study elucidates that curcumin treatment enhances the phagocytic activity with blocking nitric oxide synthesis, a scavenger function of macrophages in non-inflammatory condition. In addition, this enhancement of phagocytic activity is triggered directly by the signals from curcumin itself not by apoptotic cells.  相似文献   

10.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.  相似文献   

11.
Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.  相似文献   

12.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

13.
为研究连翘脂素的抗炎效应及其抗炎机制,以地塞米松作为阳性对照,建立脂多糖(LPS)诱导小鼠巨噬细胞RAW264.7炎症模型,检测炎症因子的释放及相关蛋白和mRNA的表达,以期提高对连翘脂素抗炎作用的全面认识并为连翘脂素临床开发提供有力的科学依据。实验采用Griess法检测细胞上清液中NO含量,ELISA法检测TNF-α和IL-6的含量,Westernblot法检测iNOS、COX-2蛋白的表达,RT-qPCR法检测iNOS、COX-2mRNA的表达。与LPS组比较,连翘脂素组和地塞米松组可以明显降低LPS诱导的RAW264.7细胞释放NO、TNF-α和IL-6的量,并呈现浓度依赖关系。Westrenblot和RT-qPCR结果显示连翘脂素能抑制LPS诱导的iNOS、COX-2的蛋白表达以及mRNA的表达,并呈浓度依赖关系。实验研究表明连翘脂素能够明显抑制LPS诱导的RAW264.7细胞炎症因子的释放,iNOS、COX-2蛋白及mRNA的表达从而抑制炎症反应。  相似文献   

14.
巨噬细胞迁移抑制因子(MIF)在调节固有免疫和获得性免疫中发挥重要作用,在炎症、败血症和自身免疫疾病中都有它的参与.MIF可以刺激巨噬细胞表达TNF-α、IL-1#、IL-6和IL-8等多种细胞因子.在最近的研究中发现,外源性的MIF可以上调RAW264.7细胞中TNF-αⅡ型受体的mRNA水平,细胞自分泌的MIF对维持TNF-αⅡ型受体的基线水平有很大作用.这种调节作用可以被Src和JNK抑制剂所阻断.在巨噬细胞活化过程中,MIF这一新发现的功能提示它在放大炎症信号的同时,还能消减TNF-α可能引起的凋亡和细胞毒等副作用.  相似文献   

15.
Bacterial endotoxin (lipopolysaccharide, LPS) has the property of inducing hyporesponsiveness or tolerance to its own effects. This phenomenon has been demonstrated in man and experimental animals. The cellular changes that contribute to LPS tolerance are not understood. One mechanism of tolerance could involve a diminished response to LPS by key effector cells such as macrophages. Here we describe experiments designed to determine the mechanism whereby LPS produces a hyporesponsive state to its own effects. Because of the importance of the monokine known as tumor necrosis factor-alpha (TNF-alpha) in mediating many of the diverse effects of LPS, we have studied induction of TNF-alpha at the mRNA and activity level in the murine macrophage-like cell line RAW 264.7. Hyporesponsiveness can be induced by exposure of RAW 264.7 cells to low doses of LPS for more than 6 h prior to challenge with a second, normally stimulatory dose of LPS. This hyporesponsiveness is characterized by a diminished ability of LPS to increase steady state levels of TNF-alpha mRNA, is not due to an increased rate of TNF-alpha mRNA degradation, and is specific for LPS since LPS-pretreated and control cells produce similar amounts of TNF-alpha in response to challenge with heat-killed Staphylococcal aureus. The presence of indomethacin during the primary and/or challenge LPS treatment has no effect on the induction of acquired hyporesponsiveness. Thus, cyclooxygenase products are probably not involved in the development of LPS-induced hyporesponsiveness. These studies provide the basis for a better understanding of the cellular mechanisms that contribute to LPS tolerance.  相似文献   

16.
AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells   总被引:2,自引:1,他引:1  
Pang M  Martinez AF  Fernandez I  Balkan W  Troen BR 《Gene》2007,403(1-2):151-158
Cathepsin K (CTSK) is a secreted protease that plays an essential role in osteoclastic bone resorption, and CTSK levels increase with osteoclast differentiation and activation, a process that is controlled by a complex physiological network of hormones and cytokines. A critical regulator of this process is receptor activator of NF-kappaB ligand (RANKL), a member of the tumor necrosis factor (TNF) superfamily of cytokines that can act via the TNF receptor activating factor (TRAF6)/AP-1 signaling pathway. However, the mechanism whereby RANKL modulates CTSK expression is not fully understood. Therefore, we investigated the regulation of CTSK expression and promoter activity in RAW 264.7 osteoclast precursor cells, which can be readily differentiated to osteoclasts upon RANKL stimulation. Western blot analysis, real-time RT-PCR and luciferase reporter gene assays revealed that RANKL stimulated CTSK expression and promoter activity in a dose- and time-dependent manner and that this activation was inhibited by either dominant negative (DN) TRAF6 or DN-c-fos. TRAF6 stimulated the basal activity of a truncated CTSK promoter, and DN-c-fos blocked this stimulation. JunB alone also stimulated basal CTSK promoter activity, whereas c-jun, JunD or c-fos alone did not. However, co-transfection of any of these jun-family members with c-fos (AP-1) significantly increased CTSK promoter expression. siRNA targeted against c-jun or junB suppressed RANKL-mediated CTSK expression. Therefore, both TRAF6 and AP-1 help regulate the basal and RANKL-mediated stimulation of CTSK gene expression in RAW 264.7 cells.  相似文献   

17.
Min KJ  Cho KH  Kwon TK 《Cellular signalling》2012,24(6):1215-1221
Macrophages take up oxidized low density lipoprotein (oxLDL) after being exposed to it in the blood vessels. oxLDL transforms macrophages into foam cells, which are a hallmark of atherosclerosis. The effects that oxLDL have on the inflammatory responses of foam cells are not clear. Here, we investigated how oxLDL modulates lipopolysaccharide (LPS)-induced inflammatory mediators in RAW 264.7 murine macrophages. Our results showed that oxLDL dramatically induced HO-1 expression, but did not increase pro-inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, iNOS, and monocyte chemoattractant protein (MCP)-1. In RAW 264.7 macrophages, oxLDL markedly inhibited LPS-induced inflammatory mediators such as inducible nitric oxide synthase (iNOS), IL-1β, IL-6, granulocyte macrophage colony-stimulating factor and stromal cell-derived factor-1. Interestingly, however, the down-regulation of HO-1 by siRNA did not recover the inhibition of LPS-induced expression and/or the secretion of inflammatory mediators. oxLDL blocked LPS-induced NF-κB nuclear translocation by inhibiting inhibitory κB (IκB) degradation. Taken together, our results suggest that oxLDL could modulate LPS-induced inflammatory responses by inhibiting NF-κB signaling independently of HO-1 expression.  相似文献   

18.
Epidemiological studies indicate that patients suffering from atherosclerosis are predisposed to develop osteoporosis. Atherogenic determinants such as oxidized low-density lipoprotein (oxLDL) particles have been shown both to stimulate the proliferation and promote apoptosis of bone-forming osteoblasts. Given such opposite responses, we characterized the oxLDL-induced hormesis-like effects in osteoblasts. Biphasic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reductive activity responses were induced by oxLDL where low concentrations (10–50 µg/ml) increased and high concentrations (from 150 µg/ml) reduced the MTT activity. Cell proliferation stimulation by oxLDL partially accounted for the increased MTT activity. No alteration of mitochondria mass was noticed, whereas low concentrations of oxLDL induced mitochondria hyperpolarization and increased the cellular levels of reactive oxygen species (ROS). The oxLDL-induced MTT activity was not related to intracellular ROS levels. OxLDL increased NAD(P)H-associated cellular fluorescence and flavoenzyme inhibitor diphenyleneiodonium reduced basal and oxLDL-induced MTT activity, suggesting an enhancement of NAD(P)H-dependent cellular reduction potential. Low concentrations of oxLDL reduced cellular thiol content and increased metallothionein expression, suggesting the induction of compensatory mechanisms for the maintenance of cell redox state. These concentrations of oxLDL reduced osteoblast alkaline phosphatase activity and cell migration. Our results indicate that oxLDL particles cause hormesis-like response with the stimulation of both proliferation and cellular NAD(P)H-dependent reduction potential by low concentrations, whereas high concentrations lead to reduction of MTT activity associated with the cell death. Given the effects of low concentrations of oxLDL on osteoblast functions, oxLDL may contribute to the impairment of bone remodeling equilibrium. osteoblasts; atherosclerosis; oxysterol  相似文献   

19.
20.
Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production only when cells were synergistically stimulated with IFN-gamma plus Escherichia coli lipopolysaccharide (LPS). Ascorbate neither enhanced nor decreased the expression of iNOS protein in RAW 264.7 cells, in contrast to the reports that ascorbic acid augments iNOS induction in a mouse macrophage-like cell line J774.1 and that ascorbate suppresses iNOS induction in rat skeletal muscle endothelial cells. Intracellular levels of tetrahydrobiopterin (BH4), a cofactor for iNOS, were increased by ascorbate in RAW 264.7 cells. However, ascorbate did not increase GTP cyclohydrolase I mRNA, the main enzyme at the critical steps in the BH4 synthetic pathway, expression levels and activity. Sepiapterin, which supplies BH4 via salvage pathway, more efficiently enhanced NO production if ascorbate was added. These data suggest that enhanced activation of iNOS by ascorbic acid is mediated by increasing the stability of BH4 in RAW 264.7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号