首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人口和人均食物需求的增加对全球耕地产生了显著的影响。利用欧空局提供的精度为300m的最新土地覆被产品,文章分析了1992-2015年全球耕地的时空变化趋势和耕地转化特征。结果显示:1)在1992-2004年间全球耕地面积增长迅速,而在2004-2012年间耕地增长缓慢,2012年后耕地有缓慢减少的趋势。2)在洲尺度上,非洲耕地有一直增长的态势,而其他洲耕地都经历了耕地转型,有先增长后下降的趋势;在收入较高的国家,耕地多有下降的趋势。3)全球耕地增长的热点区域主要分布在亚马逊林地、欧亚大草原和撒哈拉沙漠边缘。全球耕地减少的中心从欧洲转移到亚洲。由于迅速的城市化,亚洲耕地扩张侵占了大量农田。  相似文献   

2.
This study examined the spatial distribution of the continent coastline in northern China using remote sensing and GIS techniques,and calculated the fractal dimension of the coastline by box-counting method,with a time span from 2000 to 2012.Moreover,we analyzed the characteristics of spatial-temporal changes in the coastline's length and fractal dimension,the relationship between the length change and fractal dimension change,and the driving forces of coastline changes in northern China.During the research period,the coastline of the study area increased by 637.95 km,at a rate of 53.16 km per year.On the regional level,the most significant change in coastline length was observed in Tianjin and Hebei.Temporally,the northern China coastline grew faster after 2008.The most dramatic growth was found between 2010 and 2011,with an increasing rate of 2.49% per year.The fractal dimension of the coastline in northern China was increasing during the research period,and the most dramatic increase occurred in Bohai Rim.There is a strong-positive linear relationship between the historical coastline length and fractal dimension(the correlation coefficient was 0.9962).Through statistical analysis of a large number of local coastline changes,it can be found that the increase(or decrease) of local coastline length will,in most cases,lead to the increase(or decrease) of the whole coastline fractal dimension.Civil-coastal engineering construction was the most important factor driving the coastline change in northern China.Port construction,fisheries facilities and salt factories were the top three construction activities.Compared to human activities,the influence of natural processes such as estuarine deposit and erosion were relatively small.  相似文献   

3.
Rapid peri-urbanization has become a new challenge for sustainable urban-rural development worldwide. To clarify how unprecedented urban sprawl at the metropolitan fringe impacts urban-rural landscape, this study took the Beijing-Tianjin corridor of Beijing-Tianjin-Hebei metropolitan area, one of the largest urban clusters in China, as a typical example. By using Landsat-based landscape metrics and a practical methodology, we investigated the landscape changes and discussed the potential reasons in the context of rapid peri-urbanization of China. Specifically, multi-temporal land use maps derived from Landsat images were used to calculate landscape metrics and analyze their characteristics along the urban-rural gradients. The practical methodology was used to monitor spatio-temporal characteristics of landscape change in large metropolitan areas. The results showed that landscape patterns in the area had changed greatly from 2000 to 2015 with characteristics of construction land sprawl and arable land shrinkage. The intensity and scale of landscape changes varied along the urban-rural gradients. Sampled plots in urbanized areas and rural areas demonstrated distinguishable landscape patterns and significant differences. Urban areas had more heterogeneous and fragmented landscapes than rural areas. Peri-urban areas in general experienced higher levels of land diversification than rural areas. Rural residential land appeared to be more aggregated near Beijing and Tianjin cities. Besides, our findings also indicated that urban expansion was largely responsible for landscape patterns.The findings of this study potentially provide strategical insights into landscape planning around mega cities and sustainable coordinated urban-rural development.  相似文献   

4.
归一化植被指数(NDVI)作为表征植被生长状况的关键性指标,能够有效的提供植被生长状况的信息。本研究基于1982–2015年哈萨克斯坦时间序列的GIMMS/NDVI数据,分析植被)生长的空间格局及变化趋势,研究结果表明:哈萨克斯坦自北向南分布着农田、草地、灌丛这三类主要的植被类型,呈明晰的地带性分布特征;植被指数由北到南逐渐降低,农田、草地和灌丛三类主要植被类型的NDVI均值水平依次为农田草地灌丛;1982–2015年间,NDVI呈现出先增长(1982–1992年)、再降低(1993–2007年)、然后又增长(2008–2015年)的变化趋势。NDVI显著下降的区域占土地总面积的24.0%,主要分布在西北部的农田与草地交错地带以及南部边缘的农田,草地退化面积占草地总面积的23.5%、农田退化面积占农田总面积的48.4%、灌丛退化面积占灌丛总面积的13.7%,植被改善的区域分布在中东部的农田以及农田与草地的交错带,显著提升的面积占土地总面积的11.8%。  相似文献   

5.
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.  相似文献   

6.
Hengduan Mountains offer land space for a variety of ecological services. However, the sustainable development and management of land space has been challenged by increased human activities in recent years. This paper performs the spatial pattern analysis of the quantitative and structural changes of various landscapes at different altitudes, and uses the land use data in 1990, 2000, 2010 and 2015 to reveal how various land patterns have changed. The results show that, within the production-living-ecological space schema, the ecological space dominates Hengduan Mountains, while the production and living space was mainly distributed in south region. During 1990–2015, the production-living-ecological spatial changes had been gradually accelerated and the regional differences had become more prominent. The agricultural production space had continuously decreased by 1132.31 km~2, and the industrial and mining production space had rapidly increased by 281.4 km~2 during 1990–2015. The living space had steadily increased, and the ecological space had increased with fluctuations. The land space pattern in Hengduan Mountains was greatly restricted by the terrain, such as altitude and slope. The implementations of China Western Development Strategy and the Returning Farmland to Forest Program had favorably promoted the changes of land spatial pattern in Hengduan Mountains.  相似文献   

7.
Multiple cropping index(MCI) is the ratio of total sown area and cropland area in a region,which represents the regional time intensity of planting crops.Multiple cropping systems have effectively improved the utilization efficiency and production of cropland by increasing cropping frequency in one year.Meanwhile,it has also significantly altered biogeochemical cycles.Therefore,exploring the spatio-temporal dynamics of multiple cropping intensity is of great significance for ensuring food and ecological security.In this study,MCI of Huang-Huai-Hai agricultural region with intensive cropping practices was extracted based on a cropping intensity mapping algorithm using MODIS Enhanced Vegetation Index(EVI) time series at 500-m spatial resolution and 8-day time intervals.Then the physical characteristics and landscape pattern of MCI trends were analyzed from 2000–2012.Results showed that MCI in Huang-Huai-Hai agricultural region has increased from 152% to 156% in the 12 years.Topography is a primary factor in determining the spatial pattern dynamics of MCI,which is more stable in hilly area than in plain area.An increase from 158% to 164% of MCI occurred in plain area while there was almost no change in hilly area with single cropping.The most active region of MCI change was the intersection zone between the hilly area and plain area.In spatial patterns,landscape of multiple cropping systems tended to be homogenized reflected by a reduction in the degree of fragmentation and an increase in the degree of concentration of cropland with the same cropping system.  相似文献   

8.
Landforms are an important factor determining the spatial pattern of cropland through allocation of surface water and heat. Therefore, it is of great importance to study the change in cropland distribution from the perspective of geomorphologic divisions. Based on China's multi-year land cover data(1990, 1995, 2000, 2005, 2010 and 2015) and geomorphologic regionalization data, we analyzed the change in cropland area and its distribution pattern in six geomorphologic regions of China over the period of 1990-2015 with the aid of GIS techniques. Our results showed that the total cropland area increased from 177.1 to 178.5 million ha with an average increase rate of 0.03%. Cropland area decreased in southern China and increased in northern China. Region I(Eastern hilly plains) had the highest cropland increase rate, while the cropland dynamic degree of Region IV(Northwestern middle and high mountains, basins and plateaus) was significantly higher than that of other regions. The barycenter of China's cropland shifted from northern China to the northwest over the 25-year period. Regions IV and I were the two regions with the greatest increase of cropland. Region II(Southeastern low and middle mountains) and Region V(Southwestern middle and low mountains, plateaus and basins) were the main decreasing cropland regions. The area of cropland remained almost unchanged in Region III(Northern China and Inner Mongolia eastern-central mountains and plateaus) and Region VI(Tibetan Plateau). The loss of cropland occurred mostly in Regions I and II as a result of growing industrialization and urbanization, while the increase of cropland occurred mainly in Region IV because of reclamation of grassland and other wasteland. These analyzing results would provide fundamental information for further studies of urban planning, ecosystem management, and natural resourcesconservation in China.  相似文献   

9.
基于1980-2015年的《全国农产品成本收益资料》与《山东统计年鉴》等基础资料,以耕地利用过程中的主要粮食作物和经济作物为例,探讨了山东省耕地利用集约度及其构成的时序变化特征,并进一步分析了其主要驱动因素。结果表明:(1)1980–2015年,山东省主要农作物总集约度呈上升趋势,由919.73 Yuan hm~(–2)上升到3285.06 Yuan hm~(–2),其中经济作物多年平均集约度高于粮食作物;主要农作物的人工成本和物质成本均呈增加趋势,粮食作物的物质投入远高于人工投入,而经济作物的人工投入远高于物质投入。(2)山东省主要农作物劳动集约度呈下降趋势,由1980年的501.75 d hm~(-2)下降到2015年的161.93 d hm~(–2),粮食作物相对于经济作物劳动集约度水平低且下降速率大;而资本集约度水平不断上升,由1980年的518.33Yuanhm~(–2)上升到2015年的1159.95 Yuan hm~(–2),其中种子、农家肥、化肥、农药和排灌等增产性投入比重逐渐下降,而农业机械等省工性投入比重增长显著。(3)山东省耕地利用集约度与农业劳动力数量、人均耕地面积呈显著负相关;最主要的直接驱动因素是农作物单位成本纯收益,不过在时间响应上滞后1~3年;最主要的间接驱动因素是农业政策的改革。  相似文献   

10.
In order to advance land use and land cover change(LUCC) research in Nepal, it is essential to reconstruct both the spatiotemporal distribution of agricultural land cover as well as scenarios that can explain these changes at the national and regional levels. Because of rapid population growth, the status of agricultural land in Nepal has changed markedly over the last 100 years. Historical data is used in this study, encompassing soils, populations, climatic variables, and topography. Data were revised to a series of 30 m grid cells utilized for agricultural land suitability and allocation models and were analyzed using a suite of advanced geographical tools. Our reconstructions for the spatiotemporal distribution of agricultural land in Nepal reveal an increasing trend between 1910 and 2010(from 151.2 × 10~2 km~2 to 438.8 × 10~2 km~2). This expanded rate of increase in agricultural land has varied between different eco, physiographic, and altitudinal regions of the country, significantly driven by population changes and policies over the period of this investigation. The historical dataset presented in this paper fills an existing gap in studies of agricultural land change and can be applied to other carbon cycle and climate modeling studies, as well as to impact assessments of agricultural land change in Nepal.  相似文献   

11.
耕地资源保护利用对于保障中国粮食安全、生态可持续发展和社会稳定至关重要。本文以吉林省为研究区,以1980、1990、1995、2000、2005、2010、2015年遥感影像及统计数据为数据源,采用转移矩阵模型和耕地压力指数模型,对研究区耕地利用变化的时间特征、空间特征及耕地压力指数进行测算。研究结果表明:在时间尺度上,1980-2015年间耕地数量从701.88×104ha增加到762.82×104 ha,人均耕地面积从0.1524 ha增加到0.1707 ha,耕地压力指数从0.7922增加到0.7953;在空间尺度上,1980年及1990年吉林省耕地压力主要集中在南部地区,1995年集中在南部和东部地区,2000年集中在西南和东部地区,2005年集中在南部和东南地区,2010年和2015年集中在南部、东南部及中心地区。耕地压力变化的方向主要从吉林省的西北部向东南部转移。  相似文献   

12.
Understanding the spatial and temporal variations of cropping systems is very important for agricultural policymaking and food security assessment,and can provide a basis for national policies regarding cropping systems adjustment and agricultural adaptation to climate change.With rapid development of society and the economy,China's cropping structure has profoundly changed since the reform and opening up in 1978,but there has been no systematic investigation of the pattern,process and characteristics of these changes.In view of this,a crop area database for China was acquired and compiled at the county level for the period 1980–2011,and linear regression and spatial analysis were employed to investigate the cropping structure type and cropping proportion changes at the national level.This research had three main findings:(1) China's cropping structure has undergone significant changes since 2002;the richness of cropping structure types has increased significantly and a diversified-type structure has gradually replaced the single types.The single-crop types—dominated by rice,wheat or maize—declined,affected by the combination of these three major food crops in mixed plantings and conversion of some of their planting area to other crops.(2) In the top 10 types,82.7% of the county-level cropping structure was rice,wheat,maize and their combinations in 1980;however,this proportion decreased to 50.7% in 2011,indicating an adjustment period of China's cropping structure.Spatial analysis showed that 63.8% of China's counties adjusted their cropping structure,with the general change toward reducing the main food types and increasing fruits and vegetables during 1980–2011.(3) At the national level,the grain-planting pattern dominated by rice shifted to coexistence of rice,wheat and maize during this period.There were significant decreasing trends for 47% of rice,61% of wheat and 29.6% of maize cropping counties.The pattern of maize cropping had the most significant change,with the maize proportion decreasing in the zone from northeastern to southwestern China during this period.Cities and their surroundings were hotspots for cropping structural adjustment.Urbanization has significantly changed cropping structure,with most of these regions showing rapid increases in the proportion of fruit and vegetables.Our research suggests that the policy of cropping structural adjustment needs to consider geographical characteristics and spatial planning of cropping systems.In this way,the future direction of cropping structural adjustment will be appropriate and scientifically based,such as where there is a need to maintain or increase rice and wheat cropping,increase soybean and decrease maize,and increase the supply of fruit and vegetables.  相似文献   

13.
Land use and its dynamics have attracted considerable scientific attention for their significant ecological and socioeconomic implications.Many studies have investigated the past changes in land use,but efforts exploring the potential changes in land use and implications under future scenarios are still lacking.Here we simulate the future land use changes and their impacts on ecosystem services in Northeast China(NEC) over the period of 2000–2050 using the CLUE–S(Conversion of Land Use and its Effects at Small regional extent) model under the scenarios of ecological security(ESS),food security(FSS) and comprehensive development(CDS).The model was validated against remote sensing data in 2005.Overall,the accuracy of the CLUE–S model was evaluated at 82.5%.Obtained results show that future cropland changes mainly occur in the Songnen Plain and the Liaohe Plain,forest and grassland changes are concentrated in the southern Lesser Khingan Mountains and the western Changbai Mountains,while the Sanjiang Plain will witness major changes of the wetlands.Our results also show that even though CDS is defined based on the goals of the regional development plan,the ecological service value(ESV) under CDS is RMB 2656.18 billion in 2050.The ESV of CDS is lower compared with the other scenarios.Thus,CDS is not an optimum scenario for eco-environmental protection,especially for the wetlands,which should be given higher priority for future development.The issue of coordination is also critical in future development.The results can help to assist structural adjustments for agriculture and to guide policy interventions in NEC.  相似文献   

14.
Among the most devastating extreme weather events, cold surge(CS) events frequently impact northern China. It has been reported that extreme weather events will increase in the global warming context. However, the direct evidence of this hypothesis is limited. Here, we investigated the changes in frequency, number, duration, and temperature of CS events in northern China using the daily minimum temperature dataset of 331 stations from 1960 to 2016. The results indicate that the annual CS events in terms of frequency and number decreased, and the duration shortened as the starting date was later and the ending date earlier. Meanwhile, the annual CS temperature increased. In addition, spatial trends in the CS events in terms of frequency, number, and duration decreased while the CS temperature increased in most regions of northern China. We interpreted these variations as a response to global warming. However, the extreme CS events in terms of frequency, number and the earliest starting date and the latest ending date showed little change though the extreme CS temperature increased, implying climate warming had not limited extreme CS events. The adverse effect of CS events on agriculture and human health remain concerning.  相似文献   

15.
Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index(NDVI) dataset,we investigated the patterns of spatiotemporal variation in vegetation coverage and its associated driving forces in the Qinling-Daba(Qinba) Mountains in 2000–2014.The Sen and Mann–Kendall models and partial correlation analysis were used to analyze the data,followed by calculation of the Hurst index to analyze future trends in vegetation coverage.The results of the study showed that(1) NDVI of the study area exhibited a significant increase in 2000–2014(linear tendency,2.8%/10a).During this period,a stable increase was detected before 2010(linear tendency,4.32%/10a),followed by a sharp decline after 2010(linear tendency,–6.59%/10a).(2) Spatially,vegetation cover showed a "high in the middle and a low in the surroundings" pattern.High values of vegetation coverage were mainly found in the Qinba Mountains of Shaanxi Province.(3) The area with improved vegetation coverage was larger than the degraded area,being 81.32% and 18.68%,respectively,during the study period.Piecewise analysis revealed that 71.61% of the total study area showed a decreasing trend in vegetation coverage in 2010–2014.(4) Reverse characteristics of vegetation coverage change were stronger than the same characteristics on the Qinba Mountains.About 46.89% of the entire study area is predicted to decrease in the future,while 34.44% of the total area will follow a continuously increasing trend.(5) The change of vegetation coverage was mainly attributed to the deficit in precipitation.Moreover,vegetation coverage during La Nina years was higher than that during El Nino years.(6) Human activities can induce ambiguous effects on vegetation coverage: both positive effects(through implementation of ecological restoration projects) and negative effects(through urbanization) were observed.  相似文献   

16.
Quantitative characterization of environmental characteristics of cropland(ECC)plays an important role in maintaining sustainable development of agricultural systems and ensuring regional food security. In this study, the changes in ECC over the Songnen Plain, a major grain crops production region in Northeast China, were investigated for the period 1990–2015. The results revealed significant changes in climate conditions, soil physical properties and cropland use patterns with socioeconomic activities. Trends in climate parameters showed increasing temperature(+0.49°C/decade, p 0.05) and decreasing wind speed(–0.3 m/s/decade, p 0.01) for the growing season, while sunshine hours and precipitation exhibited non-significant trends. Four topsoil parameters including soil organic carbon(SOC), clay, bulk density and pH, indicated deteriorating soil conditions across most of the croplands, although some do exhibited slight improvement. The changing amplitude for each of the four above parameters ranged within –0.052 to 0.029 kg C/kg, –0.38 to 0.30,–0.60 to 0.39 g/cm~3, –3.29 to 2.34, respectively. Crop production significantly increased(44.0 million tons) with increasing sown area of croplands(~2.5 million ha) and fertilizer application(~2.5 million tons). The study reveals the dynamics of ECC in the Songnen Plain with intensive cultivation from 1990 to 2015. Population growth, economic development, and policy reform are shown to strongly influence the spatiotemporal changes in cropland characteristics.The study potentially provides valuable scientific information to support sustainable agroecosystem management in the context of global climate change and national socioeconomic development.  相似文献   

17.
Based on the daily observation data of 824 meteorological stations during 1951-2010 released by the National Meteorological Information Center, this paper evaluated the changes in the heat and moisture conditions of crop growth. An average value of ten years was used to analyze the spatio-temporal variation in the agricultural hydrothermal conditions within a 1 km2 grid. Next, the inter-annual changing trend was simulated by regression analysis of the agricultural hydrothermal conditions. The results showed that the contour lines for temperature and accumulated temperatures(the daily mean temperature ≥0°C) increased significantly in most parts of China, and that the temperature contour lines had all moved northwards over the past 60 years. At the same time, the annual precipitation showed a decreasing trend, though more than half of the meteorological stations did not pass the significance test. However, the mean temperatures in the hottest month and the coldest month exhibited a decreasing trend from 1951 to 2010. In addition, the 0°C contour line gradually moved from the Qinling Mountains and Huaihe River Basin to the Yellow River Basin. All these changes would have a significant impact on the distribution of crops and farming systems. Although the mechanisms influencing the interactive temperature and precipitation changes on crops were complex and hard to distinguish, the fact remained that these changes would directly cause corresponding changes in crop characteristics.  相似文献   

18.
林地是维护生态安全,实现区域可持续发展的根本基础资源。林地变化可能导致一些生态环境问题,包括土壤侵蚀,水资源短缺,干旱加剧以及生物多样性的丧失。本文以景观生态学和逻辑回归模型为基础,探讨了京津冀地区1985-2000期间林地变化的时空格局及其影响因素。格局分析结果表明,林地景观破碎化正在下降和林地形状变得越来越规则。通过建立Logistic回归模型,这项研究旨在探讨这一区域1985-2000期间林地变化的重要变量。对于京津冀地区1985-2000期间林地变化而言,土壤有机质含量,坡度(5°),到最近村庄的距离以及人均国内生产总值是最重要的解释变量。研究表明,空间异质性会影响到林地变化的逻辑回归模型的可预测性。  相似文献   

19.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km~2 while the cropland decreased by 4.9×10~3 km~2, and the total area of woodland and grassland decreased by 16.4×10~3 km~2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in centraland western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

20.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain(SNP)in the 1910s and 1930s.We then allocated this cropland area to grid cells with a size of 1 km×1 km,using a range of cultivation possibilities from high to low;this was based on topography and minimum distances to rivers,settlements,and traffic lines.Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China,and map vectorization was performed with Arc GIS technology.Cropland areas for the1970s,1980s,1990s,2000s,and 2010s were retrieved from Landsat images.We found that the cropland areas were 4.92×104 km~2 and 7.60×10~4 km~2,accounting for 22.8%and 35.2% of the total area of the SNP in the 1910s and 1930s,respectively,which increased to 13.14×10~4 km~2,accounting for 60.9%in the 2010s.The cropland increased at a rate of 1.18×10~4km~2 per decade from the 1910s to 1970s while it was merely 0.285×10~4 km~2 per decade from the 1970s to 2010s.From the 1910s to 1930s,new cultivation mainly occurred in the central SNP while,from the 1930s to 1970s,it was mainly over the western and northern parts.This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号