首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的选择和优化激光熔覆工艺参数,以制备三元硼化物金属基陶瓷Mo_2NiB_2涂层。方法通过激光熔覆原位合成法在碳钢表面制备了以Mo_2NiB_2为增强相的涂层,并采用金相显微镜、扫描电镜(SEM)及X射线衍射(XRD)对涂层组织进行分析。利用ANSYS计算熔覆过程的温度场,进而计算涂层凝固特征参数,即凝固形状控制因子。结果微观组织分析表明,在激光功率为2500 W、扫描速度为1.5 mm/s、预置厚度为1 mm时,可获得细密、均匀的组织,涂层中白色部分为生成的Mo_2NiB_2,灰色部分为Fe、Ni固溶体。涂层与基体结合部位以平面晶形式生长,然后以树枝晶的方式远离界面生长。温度场及凝固特征参数的计算表明,温度梯度达105℃/m数量级,形状控制因子达109(℃·s)/m~2数量级。结论激光功率的增加会使涂层中的枝晶组织趋于细密,形状因子K值大幅增大。凝固形状控制因子K为3×10~9~5×10~9(℃·s)/m~2时,凝固组织为平面晶,表现为"白亮带";K为7×10~9(℃·s)/m~2以上时,凝固组织为树枝晶;K为13×10~9(℃·s)/m~2时,树枝晶晶粒出现明显的细化现象。  相似文献   

2.
高温度梯度(180K/cm)定向凝固方法可制备单相Mg_2Sn晶体,通过凝固理论对平-胞转换临界速率进行了计算,并预测了单相Mg_2Sn晶体的生长距离,与试验结果相吻合。此方法获得的Mg_2Sn晶体由于去除了第二相Sn的影响,可以获得更好的热电性能,在测试温度区间300~700K内,未掺杂条件下最大Seebeck系数和电导率值分别可达-261μV·K~(-1)和525?-1·m~(-1),通过Bi掺杂来对电导率进行优化后,功率因子最高可达2.29 mW·(m·K~2)~(-1)。单相Mg_2Sn晶体的热导率也得到大幅降低,500 K时,最小值为4.3 W·(m·K)~(-1),Bi掺杂量为1.5%(原子分数)时,热电优值ZT最高可达到0.21。这一方法可以为制备高性能的Mg_2B~(IV)体系三元固溶体合金提供参考。  相似文献   

3.
采用工业纯原料感应熔炼制备出公斤级La_(0.6)Pr_(0.4)Fe_(11.4)Si_(1.6)B_(0.2)合金,经退火后通过吸氢处理提高其居里温度到室温附近。研究了在1373~1473 K温度下经不同时间和温度退火对合金微观组织结构的影响。实验发现在1473 K经30 h退火样品的居里温度为202 K,在0~1.5 T变化磁场下的最大磁熵变达8.1~8.6 J/kg·K。在0.13 MPa氢气压力下,经553 K吸氢5 h氢化处理合金的居里温度为320 K,最大磁熵变达7.7~8.0 J/kg·K。  相似文献   

4.
以Zn(OH)2和In2O3为原料,用放电等离子烧结(SPS)技术制备了层状结构的(ZnO)mIn2O3(m=5,7,9)织构热电材料。通过XRD、SEM以及ZEM表征样品的物相、显微组织和电输运性能,分析了m值和烧结温度的影响机制。结果表明,(ZnO)mIn2O3(m=5,7,9)块体材料在平行于压力方向沿(00l)择优取向,呈层状结构特征。固定烧结温度为1323K时,(ZnO)7In2O3样品在773K取得最大功率因子1.88×10-4W·m-1K-2。优化(ZnO)9In2O3样品的烧结温度,发现降低烧结温度增加了Seebeck系数,1223K烧结时在773K取得最大功率因子2.2×10-4W·m-1K-2。  相似文献   

5.
按照原子比Al63Cu2 5Fe1 2 配料 ,在真空感应炉中熔炼制备AlCuFe准晶材料样品。该样品中含有准晶相和它的类似晶体相 (λ相和 β相 )经 80 0℃热处理 ,X射线衍射分析表明准晶相的含量显著增加。还研究了AlCuFe准晶材料的落管凝固 ,根据SEM/EDAX分析 ,AlCuFe准晶材料的微结构依赖于凝固方式和冷却速度 ,但其相组成基本不变  相似文献   

6.
彭德林  王微 《铸造》2012,61(10)
采用水冷铜坩埚感应熔炼技术及陶瓷型壳铸造了人体假肢关节 Ti-Nb-Zr-Mo合金精密铸件.利用光学显微镜XRD、SEM、TEM观察和分析了铸件的凝固组织 并且在25℃、0℃、-25℃、-50℃温度下测试了拉伸性能和弹性模量.结果表明,合金的凝固组织是由β+α相组成,合金具有较高的强度,随着温度的降低合金的强度升高,伸长率降低,弹性模量保持在70 GPa左右.  相似文献   

7.
结合机械合金化(MA)与放电等离子烧结(SPS)工艺制备了NiSe_2块体热电材料。研究了MA球磨时间和SPS烧结温度对NiSe_2热电材料的物相、显微组织以及电热传输性能的影响。结果表明:当转速为425 r/min,球磨40 h后合成了约45 nm的NiSe_2纳米粉体。NiSe_2粉体是一种直接禁带半导体,禁带宽度为2.653 eV,其块体呈n型导电特征。烧结温度为773 K时,NiSe_2块体材料在323 K获得最大功率因子101μW·m~(-1)·K~(-2),热导率为7.5 W·m~(-1)·K~(-1),最大ZT值为0.0045。  相似文献   

8.
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。  相似文献   

9.
利用溶胶凝胶(sol-gel)法和放电等离子烧结(SPS)制备了单相的钙钛矿结构La_xSr_(1-x)TiO_3 (0≤x≤0.15)块体材料,与传统的固相反应法相比,烧结温度大幅降低.在室温至679 K的温度范围内测量了La_xSr_(1-x)TiO_3 (0≤x≤0.15)的Seebeck系数和电导率,确定了最佳La掺杂量x=0.08.La_0.08Sr_0.92TiO_3在679 K时,最大功率因子PF=2.95 μWm~(-1)·K~(-2),随温度升高,PF增大趋势明显,表明在高温环境中可具有更大的PF.  相似文献   

10.
(Na1-yMy)1.6 Co2O4(M=K,Ca,Sr)的制备及电学性能   总被引:2,自引:0,他引:2  
用溶胶凝胶法制备了NaCo2O4及(Na1-yMy)1.6Co2O4(M=K,0.05≤y≤0.35;M=Ca,Sr,0.10≤y≤0.40)的氧化物。研究结果表明:掺杂Ca、Sr的NaCo2O4样品的Seebeck系数都有一定提高;而掺杂K的NaCo2O4样品的Seebeck系数无明显提高,且掺K使NaCo2O4的功率因子降低;对NaCo2O4掺杂Ca的量0相似文献   

11.
利用B_2O_3助熔剂法结合SPS技术制备了Mg_(2-x)Zn_xSi_(0.99)Sb_(0.01)(0≤x≤0.1)固溶体。测量了300~780 K温度区间内试样的电导率、塞贝克系数和热导率。发现晶格热导率随Zn取代量的增大而降低。而电导率随Zn取代量的增大而先降低后增大。讨论了影响电导率与晶格热导率的变化规律的具体内在机制。所有样品中x=0.075样品的功率因子最高,在780 K达1.76 m W·m~(-1)·K~(-2),比基体Mg_(2-x)Zn_xSi_(0.99)Sb_(0.01)高约18%。x=0.1样品具有最低晶格热导率,在770 K达到2.86 W·m~(-1)·K~(-1)。低晶格热导率使Mg_(1.9)Zn_(0.1)Si_(0.99)Sb_(0.01)具有最高热电优值,在780 K达0.37。  相似文献   

12.
采用定向凝固方法制备了Ni47Mn32Ga21多晶合金,通过XRD谱和金相照片研究合金的结构,通过对合金磁化强度与温度关系、电阻与温度关系、磁化曲线和磁感生应变曲线的测量分析,研究了合金的相变、磁化特性及磁感生应变特性。结果表明:Ni47Mn32Ga21合金在室温(298K)时为四方结构马氏体相,晶格参数a=b=0.593 8 nm,c=0.553 1 nm。合金的马氏体相变起始温度Ms和终止温度Mf分别为309 K和295 K,逆马氏体相变起始温度As与终止温度Af分别为306 K和319 K,居里温度TC为365 K。室温无压力下,Ni47Mn32Ga21合金有较好的双向可恢复磁感生应变,其饱和磁感生应变值达到-700×10-6。  相似文献   

13.
采用SEM和TEM分析蠕变前、后的显微组织,研究定向凝固NiAl-Cr(Mo)-W/Nb合金在1223~1373K温度区间的拉伸蠕变行为的机理。结果表明:定向凝固NiAl-Cr(Mo)-W/Nb合金的横向显微组织为典型的胞状共晶,纵向显微组织具有明显的方向性,Cr(Mo)相以片层状沿凝固方向分布。在所采用的温度和外加应力条件下,合金蠕变曲线均具有较短的减速蠕变阶段和相当长的稳态蠕变阶段及较高的蠕变应变,蠕变应变范围为15%~28%。蠕变过程发生动态回复和动态再结晶,蠕变过程是由扩散和位错蠕变共同控制。合金蠕变断裂主要受蠕变裂纹的形成与扩展的控制,蠕变断裂的方式为沿相界的剥离。  相似文献   

14.
采用真空电弧熔炼法制备了Zr_(1-x)Nb_xCo (x=0,0.05,0.1,0.15,0.2)合金,研究了Nb掺杂对ZrCo合金相组成、吸放氢及抗歧化性能的影响。XRD结果表明:Zr_(1-x)NbxCo (x=0~0.2)合金主相为ZrCo相,含有少量ZrCo_2杂相;氢化物为ZrCoH_3相。Nb掺杂有利于ZrCo合金吸放氢性能的提高:ZrCo吸氢反应活化时间为7690 s,Zr_(0.8)Nb_(0.2)Co缩短至380s;ZrCo吸氢反应表观活化能力44.88 kJ·mol~(-1) H_2,Zr_(0.8)Nb_(0.2)Co降低至32.73 kJ·mol~(-1) H_2;10 K/min升温速度下,ZrCo-H系统放氢温度为597.15 K,Zr_(0.8)Nb_(0.2)Co-H系统降低至541.36 K;ZrCo-H系统放氢反应表观活化能为100.55 kJ·mol~(-1) H_2,Zr_(0.8)Nb_(0.2)Co-H系统降低至84.58 kJ·mol~(-1) H_2。放氢模式下798 K保温10 h ZrCo歧化83.68%,Zr_(0.8)Nb_(0.2)Co仅歧化8.71%;Nb掺杂降低合金氢化物8e间隙氢原子数量,减小岐化反应驱动力,提高合金抗歧化性能。  相似文献   

15.
采用真空自耗电弧熔炼法制备了Nb-Ti-Si基超高温合金的母合金锭,在2050℃的熔体温度下实现了合金的有坩埚整体定向凝固.测定了电弧熔炼态与定向凝固试样的室温条件断裂韧性,采用SEM,EDS等方法分析了凝固速率V分别为10,20和50 μm/s的整体定向凝固组织、单边切口梁弯曲试样的断口形貌及裂纹扩展路径,并讨论了其断裂机理.结果表明:合金的整体定向凝固组织主要由沿着试棒轴向挺直排列的横截面为多边形的初生(Nb,X)5Si3 (X代表Ti,Hf和Cr元素)棒与耦合生长的层片状Nbss/(Nb,X)5Si3共晶团(Nbss表示铌基固溶体)组成.整体定向凝固显著提高合金的室温条件断裂韧性KQ,且V=50μm/s时的最高,达16.1 MPa·m1/2,较电弧熔炼态试样的KQ提高了50.5%.定向凝固试样中Nbss与(Nb,X)5Si3沿垂直于受力方向的定向排列以及粗糙的Nbss产生的裂纹桥接和偏转,增大了裂纹扩展阻力,从而提高了合金的室温条件断裂韧性.  相似文献   

16.
李亚敏  陈毅  郝远 《热加工工艺》2012,41(11):31-34
利用手工电弧炉熔炼制备了Zr质量分数为0.00%~0.07%的K4169合金,采用金相显微镜、扫描电镜、能谱仪以及差热分析对合金的凝固组织、元素偏析及熔点进行了研究。结果表明,Zr的加入促进了合金中Nb、Mo、Ti等元素的偏析,使铸态合金晶界析出的Laves相和碳化物数量增多,但随着Zr含量的增加Laves相又有所减少。Zr的加入提高了Laves相初熔温度,降低了合金的熔点。另外,微量Zr对K4169合金的凝固组织不利。  相似文献   

17.
利用Bridgman定向凝固法,在大凝固速率范围内5~1000μm/s制备出Bi2Te3-Sb2Te3三元合金块体热电材料,并对其凝固组织和不同凝固速率下合金的热电性能进行研究。结果表明:高温度梯度和大凝固速率范围内制备的25%Bi2Te3-75%Sb2Te3合金定向凝固组织由Bi0.5Sb1.5Te3单相组织组成;在较低凝固速率5μm/s下,熔体生长平界面失稳形成胞状组织,而随定向凝固速率的增加,胞状组织减少,组织细化。不同定向凝固速率下25%Bi2Te3-75%Sb2Te3合金的Seebeck系数和电阻率随着凝固速率的增加而增大。50μm/s下300~450K范围内获得功率因子(PF)在4.6×10-3~5.01×10-3W/(K2.m),并在350K时PF值达到最大值5.01×10-3W/(K2.m);而在高凝固速率500μm/s下,其功率因子也可达4.5×10-3W/(K2.m),表明高温度梯度和大凝固速率制备热电材料是一种有效的制备工艺方法。  相似文献   

18.
选用Mn基Heusler合金为研究对象,通过电弧熔炼和热处理制备样品,并用甩带法制成薄带形状。采用X射线衍射仪和振动样品磁强计等分析仪器测试样品的晶体结构、磁及磁热性能,分析Mn含量对材料晶体结构、磁和磁热性能的影响。结果表明,Mn_(2-x)Sn_(0.5)Ga_(0.5)合金在室温下为六方结构,在室温附近仅发生一次二阶磁性转变,无明显磁滞和热滞。居里温度和饱和磁化强度对Mn含量非常敏感,随着Mn含量升高,居里温度和饱和磁化强度均出现下降,由Mn~(1.2)Sn_(0.5)Ga_(0.5)的304 K和64.1 A·m~2·kg~(-1)分别降至Mn_2Sn_(0.5)Ga_(0.5)的262 K和46.7 A·m2·kg~(-1),这表明合金中的磁矩呈亚铁磁形态分布。由于没有磁滞和热滞,室温附近具有较大的工作温度区间,所以该材料在磁制冷领域具有很好的应用前景。  相似文献   

19.
在10-100μm/s的生长速度范围,热梯度为10 K/mm的情况下,研究Ni-25%Al(摩尔分数)合金定向凝固的微观结构演变规律。凝固组织显示了γ’-β平衡共晶相向γ-β亚稳态共晶加β枝晶相的转变。在25μm/s的生长速度时生成的γ’-β和γ-β共晶的混合微观组织表明转变发生在γ和γ’相之间的竞争生长期间。在凝固期间选取微观结构时应考虑各个相的生长温度,试验结果显示在给定生长速度的情况下,在凝固期间,应优先选择在最高温度固化的某个相或微观结构。而且,在25-60μm/s的生长速度范围内,由于稳态和亚稳态共晶具有相似的生长温度,因此可以共存且同时生长。  相似文献   

20.
影响铸铁凝固组织的隐形因素(Ⅰ)   总被引:1,自引:3,他引:1  
周继扬 《现代铸铁》2005,25(2):20-25
铁液在高于某一温度时,有利于Fe3C生成;在低于某一温度时,Fe3C不稳定,有自发分解为Fe和C的倾向。其临界温度受化学成分及其它因素的影响。铸铁的遗传性包含结构信息保留、成分遗传效应和物性特征保存。更换炉料、多种炉料搭配使用、进行针对性处理、熔液过热等是改善不良遗传性的途径。在同一温度条件下,石墨在熔液、奥氏体和铁素体中的溶解度都比渗碳体的溶解度低;奥氏体-石墨共晶和共析反应温度也都高于奥氏体-渗碳体的共晶和共析反应温度。硅有利于石墨的析出,使Fe—Fe3C介稳定系向Fe—C稳定系转变。所有石墨化元素均降低介稳定共晶温度,而提高稳定共晶温度,并使两者间距扩大。凝固相图反映铸铁在实际条件下的温度-成分-组织关系,其特征界限可依熔化工艺、熔液处理、冷却速度的改变而移动。商业铸铁实际上都在非平衡冷却条件下按共生区概念依凝固相图进行凝固。在过冷条件下,即使是共晶或过共晶成分铸铁,其组织中也可能存在亚共晶枝晶(奥氏体)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号