首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于光温控模型,利用四川地区植被分布数据、WRF模拟-美国国家环境预报中心(NCEP)再分析气象数据、统计年鉴和文献等资料计算了2012年四川盆地区域9km×9km网格的天然源挥发性有机物(BVOCs)排放清单。结果显示,研究区域BVOCs的排放总量为7.56×10~5 t,其中异戊二烯、单萜烯和其他BVOCs排放量依次为4.08×10~5、1.85×10~5、1.63×10~5 t。绵阳和广元的BVOCs排放量明显高于其他地区(主要体现在异戊二烯的排放上),雅安、达州、巴中以及乐山排放量在2×10~4 t以上,成都、泸州、宜宾、南充以及德阳排放量在1×10~4 t以上,其余城市为1×10~4 t以下。BVOCs排放呈现出明显的空间分布特征,四川盆地四周植被茂盛的区域排放强度较高,部分网格排放强度大于10t/km~2。  相似文献   

2.
以大连市2013年的挥发性有机物(VOCs)排放调查结果为基准,核算了大连市2017年14个重点工业行业的VOCs排放量和累计削减比例,并调研了大连市重点工业行业的减排措施.结果表明,2017年大连市工业源VOCs排放总量为4.0万t,其中精炼石油产品制造行业是大连市工业源VOCs排放的最主要来源,占排放总量的40.5...  相似文献   

3.
广州市工业挥发性有机物排放特征研究   总被引:1,自引:0,他引:1  
伴随着工业经济的高速发展,广州市大气环境面临的压力日益增大,尤其是挥发性有机物( VOCs),可经过复杂的大气化学反应,引起一系列严重的空气质量问题.以源头追溯的方法,将该区域工业相关的33个VOCs排放源按照物质流动过程分为4个环节,分析了其排放特征.结果表明,2008年VOCs排放总量为182 362.7 t,各环节的贡献率分别为:VOCs的生产环节34.5%、储存和运输环节18.4%、以VOCs为原料的工艺环节9.9%、VOCs产品的使用和排放环节37.2%;污染主要来自石油炼制与石油化工、油品储运、交通运输设备制造与维修等,前12大污染源的VOCs排放量共占2008年排放总量的87.3%.2006-2008年的VOCs排放总量均超过15万t,且呈逐年增长的趋势.该研究可为“十二五”期间珠三角VOCs污染物联防联治工作提供借鉴.  相似文献   

4.
5.
基于天津市挥发性有机物(VOCs)的管控需要,针对天津市汽车喷涂、家具喷涂、人造板生产、包装印刷4类典型溶剂使用行业排放的VOCs进行采样监测,测定了其排放组分,评估不同处理设施对VOCs组分的影响,并对其臭氧生成潜势(OFP)进行分析.结果表明:汽车喷涂行业VOCs组分主要为烯烃和含氧VOCs(OVOCs);家具喷涂...  相似文献   

6.
沈阳市固定燃烧源挥发性有机化合物2007年排放清单研究   总被引:1,自引:0,他引:1  
挥发性有机化合物(VOCs)与.OH的反应是对流层臭氧形成的重要化学过程,是导致城市光化学烟雾的根本原因。为建立沈阳市固定燃烧源VOCs排放清单,选取了电力热力行业、钢铁行业和秸秆燃烧3个主要排放源进行研究。结果表明:(1)2007年,沈阳市固定燃烧源VOCs排放总量为8 544.539 t,其中排放量最大的是秸秆燃烧,为6 317.115 t;其次是电力热力行业,为2 225.780 t;最小的是钢铁行业,为1.644 t。(2)沈阳市各区县固定燃烧源VOCs排放量由大到小排序依次为新民市、法库县、东陵区、康平县、辽中县、于洪区、苏家屯区、大东区、沈北新区、铁西区、沈河区、皇姑区、和平区;VOCs排放强度由大到小排序依次为大东区、沈河区、铁西区、东陵区、皇姑区、和平区、于洪区、苏家屯区、法库县、康平县、辽中县、沈北新区、新民市。  相似文献   

7.
为了解燃煤电厂烟气中挥发性有机物(VOCs)的分布及排放情况,在廊坊某电厂300 MW燃煤机组和50000 m3/h烟气污染物控制中试平台上开展了烟气中CH4、非甲烷总烃(NM HCs)和多种典型VOCs的全流程浓度监测.测试结果发现,在50%、100% 负荷条件下,燃煤机组烟气NM HCs分别为3.5、10.8 mg...  相似文献   

8.
石化行业是中国大气挥发性有机物(VOCs)的重要来源。以中国某新建典型石化企业为例,综合采用不同核算方法估算并比较了石化企业典型排放环节VOCs的排放结果;并在此基础上计算了石化企业典型排放环节本地化排放系数。结果表明,典型石化企业各环节VOCs排放量贡献分别为:储罐50.4%、废水收集与处理29.0%、火炬8.3%、装卸5.2%、设备密封点3.4%、循环冷却水2.4%、燃烧烟气0.8%、工艺废气0.5%;在装卸、设备密封点、废水收集与处理、循环冷却水环节,不同核算方法造成核算结果差异较大,排放系数法核算结果为本研究方法核算结果的数倍,其中装卸过程为4.2倍(无回收设施)和16.4倍(含回收设施),设备密封点为4.4倍(泄漏筛分法)和55.4倍(相关方程法),废水收集与处理为2.1倍,循环冷却水为2.1倍;《大气挥发性有机物源排放清单编制技术指南》中石油炼制企业的VOCs排放系数为本研究1.8倍,因此石化企业在建立排放清单时应开展本地化研究,建立本地化系数;研究结果对于中国建立石化企业VOCs排放清单提供了一定支撑。  相似文献   

9.
四川省汽车保有量2017年位列全国第7位,油品储运销过程中挥发性有机物(VOCs)排放压力巨大。利用排放因子法,结合四川省4 492座加油站的油品销售量,编制了四川省2017年加油站VOCs排放清单。另一方面,对四川省不同片区的VOCs排放特征及油气回收关键参数进行了现场实测。结果表明:四川省加油站VOCs排放量共12 294.54t,排放区域主要集中在成都市、绵阳市和宜宾市等地区;四川省四大片区VOCs排放浓度,加油环节攀西片区最高,达到7 076.86μg/m~3,卸油环节川东北片区最高,达到9 638.53μg/m~3,均是其他片区的2~3倍,加油和卸油环节排放的异戊烷最高占比(质量分数)可分别达到70.1%和67.4%;四川省油气回收系统达标情况仍然比较严峻,不达标率高达47%,密闭性和气液比不达标率尤为显著,集中式油气回收系统不达标率高于分散式。  相似文献   

10.
11.
对天津市滨海新区夏季挥发性有机物(VOCs)进行在线观测,分析其夏季污染特征。结果表明:83种检出VOCs平均质量浓度为288.14μg/m3,各类化合物浓度贡献排序为烷烃(39.8%)卤代链烃(26.5%)芳香烃(13.9%)烯烃(13.1%)炔烃(4.4%)卤代芳香烃(2.3%),各组分中浓度最高的为正丁烷和正戊烷,占VOCs比例高达8.1%和7.0%;苯和甲苯也有相当含量,平均质量浓度均超过7μg/m3,分别占VOCs的2.5%和2.4%。天津市滨海新区VOCs日变化呈单谷型,与交通早晚高峰关系不大,苯/甲苯(体积比)为1.32,说明化石工业排放等对天津市滨海新区大气中VOCs影响较机动车尾气显著。聚类分析发现,天津市滨海新区VOCs来源分为3类,一类是汽油挥发和液化石油气、天然气泄漏,一类是化石工业和其他工业生产过程排放,一类是机动车尾气及植物排放,其中前两类为主要来源。  相似文献   

12.
建立了2017年嘉兴市人为源大气污染物排放清单。结果发现,SO_2、NO_x、CO、挥发性有机物(VOCs)、NH_3、总悬浮颗粒物(TSP)、PM_(10)、PM_(2.5)、黑碳(BC)和有机碳(OC)排放总量分别为15 224、60 663、102 600、93 256、26 266、118 923、70 367、19 024、941、1 622t。SO_2的最大排放源是化石燃料固定燃烧源中的电力供热;NO_x的最大排放源是移动源中的柴油车;CO的最大排放源是移动源中的汽油车;VOCs的最大排放源是工艺过程源中的石油化工;NH_3的最大排放源是农业源中的氮肥施用;TSP的最大排放源是扬尘源中的道路扬尘;PM_(10)和PM_(2.5)的最大排放源是工艺过程源中的水泥生产;BC的最大排放源是移动源中的柴油车;OC的最大排放源是餐饮油烟源中的餐饮油烟。对于大气污染中普遍关注的6种污染物,SO_2、NO_x、PM_(10)、PM_(2.5)和VOCs排放的重点源主要集中在各县(市、区)的工业园区或工业集聚区,而NH_3的排放空间分布相对比较分散。  相似文献   

13.
为全面、准确地获得成都市餐饮源大气污染物排放清单,针对成都市社会餐饮、家庭餐饮和食堂餐饮分别选择监测对象进行细颗粒物(PM2.5)、非甲烷总烃(NMHCs)、油烟、氮氧化物(NOx)、SO2和CO 6种大气污染物排放浓度监测.分别按照用油量、就餐人次和灶头风量3种核算依据计算了6种大气污染物的排放因子,并计算成都市餐饮...  相似文献   

14.
VOCs是臭氧和二次有机气溶胶等复合型污染的前驱体。基于原辅料和生产工艺的角度,构建江苏省内人造板、印刷、电子、橡胶和塑料、制药、化工、喷涂为代表的典型工业行业VOCs成分谱。通过最大增量反应活性系数(MIR) 、气溶胶生成系数(FAC),依据原辅料、产品和工艺的区别,分析各行业、企业VOCs 组分区别与臭氧生成潜势和二次颗粒物生成潜势。结果表明:橡胶和塑料行业单位OFP最高,约为4.09 g·g−1;SOA较高的印刷、制药、涂装、橡胶和塑料行业,其值约为1.5 g·g−1;通过MIR 和FAC 系数模型可知,橡胶和塑料行业是O3污染管控重点,印刷、制药、涂装、橡胶和塑料行业是二次气溶胶的管控重点。基于江苏省典型工业行业VOCs特征,分析我国现行VOCs治理技术指南推荐工艺与现存低效治理工艺的差异,以估算全国典型工业行业VOCs年产污量和污染特性减排潜力,可为VOCs管理相关法规政策制定提供依据。  相似文献   

15.
对使用溶剂型油墨的凹版印刷设备和使用水性油墨的柔版印刷设备无组织排放的挥发性有机物(VOCs)浓度进行了实际监测,并采用计算流体动力学模拟无组织排放VOCs的收集效率。结果表明:(1)使用溶剂型油墨的凹版连续印刷过程非甲烷总烃(NMHC)最高均值达到5 975.67 mg/m3,约为使用水性油墨的柔版印刷(191.67 mg/m3)的31.2倍。虽然使用水性油墨可明显降低NMHC的排放,但其操作空间的浓度依然存在超过《工作场所有害因素职业接触限值第1部分:化学有害因素》(GBZ 2.1—2019)的现象。(2)印刷车间应该设置专门的调墨室,能缓解印刷车间内挥发性污染气体浓度的波动。(3)计算流体动力学模拟显示,设置合理的集气罩可有效降低VOCs的无组织排放,收集效率为70%~75%。  相似文献   

16.
利用天津市某交通居民混合区(以下简称混合区)和某废旧机电拆解加工工业区(以下简称工业区)的大气挥发性有机物(VOCs)在线监测数据,分析了天津市不同功能区大气VOCs的浓度水平、组成特征、季节变化和污染来源。结果表明,混合区监测的烷烃、不饱和脂肪烃和芳香烃3类VOCs的质量浓度分别为48.26、15.34、34.45μg/m3,总VOCs质量浓度为98.05μg/m3;工业区监测的烷烃、不饱和脂肪烃、芳香烃、卤代烷烃、卤代烯烃和卤代芳香烃6类VOCs的质量浓度分别为18.79、10.76、9.41、43.24、12.86、2.16μg/m3,总VOCs质量浓度为97.22μg/m3。混合区和工业区的大气VOCs浓度均为夏季最高,但混合区秋季次高,冬季最低,而工业区冬季次高,春季最低。混合区VOCs主要来源于机动车尾气排放和化石燃料的燃烧;工业区VOCs主要来源于有机溶剂和氟利昂等制冷剂、发泡剂的挥发。  相似文献   

17.
挥发性有机物(VOCs)是石化行业的特征污染物,油品装车栈桥的VOCs无组织挥发是石化企业重要的VOCs排放源,因此对大型石化企业油品装车栈桥区域的VOCs进行治理减排具有十分重要的意义。以西北某石化公司油品装车栈桥VOCs无组织挥发治理项目为例,通过源强核算、削减方案确定,利用AERMOD模式对栈桥区域环境空气质量改善情况进行预测分析,进而对VOCs治理方案的环境收益进行讨论,以期为同类油品装车栈桥改造项目提供借鉴与参考。  相似文献   

18.
基于浙江省29家船舶修造企业的调查数据,研究分析了船舶修造行业挥发性有机物(VOCs)治理情况和VOCs组分特征,并核算了VOCs产生系数和排放系数.结果表明,船舶修造行业VOCs治理设施总体覆盖率为55%,VOCs主要组分为苯系物(BETX)与含氧挥发性有机物(OVOCs).分别以船舶载重量、船舶数量为活动水平时,远...  相似文献   

19.
污水处理厂的挥发性有机物排放特征及健康风险评价   总被引:1,自引:0,他引:1  
挥发性有机物(VOCs)种类繁多、来源广泛,污水处理厂是其中不容忽视的排放源之一。研究了某污水处理厂的VOCs组成特征、工艺特征和时间特征,并对美国环境保护署(USEPA)的综合风险信息系统中有相应毒理学数据的化合物进行了健康风险评价。结果表明,共检出了烷烃、烯烃、卤代烃、芳香烃以及含氧VOCs 5类54种化合物。筛选出10种特征化合物为乙醇、环己烷、丙酮、乙酸乙酯、二氯甲烷、苯、甲苯、丙烯、1,4-二氧己环和正己烷。污水处理厂各处理单元中检出的VOCs总浓度由高到低依次为初沉池B、缺氧池、初沉池A、厌氧池、好氧池和储泥池。在采样的4个时间段中,5类VOCs的变化趋势一致,中午(11:00—12:00)时浓度最高,下午(14:00—15:00)时最低。参与评价的9种化合物致癌危害指数均小于1.00×10~(-6),25种化合物非致癌危害指数均小于1,致癌风险和非致癌风险均在USEPA的可接受范围内。  相似文献   

20.
家具涂料的挥发性有机物排放特征及致癌风险估算   总被引:1,自引:0,他引:1  
采用顶空实验装置采集家具涂料挥发蒸汽,通过不锈钢采样罐-气相色谱(GC)/质谱(MS)分析系统测量了溶剂型和水型涂料的挥发性有机物(VOCs)排放特征。结果表明,溶剂型涂料排放的总VOCs平均质量浓度为7.6mg/m3,远高于水型涂料的2.6mg/m3。溶剂型和水型涂料排放的VOCs主要以芳香烃和烷烃为主。溶剂型涂料和水型涂料排放的特征VOCs组分为甲苯、2-甲基戊烷、苯、正辛烷,分别占两种涂料总VOCs排放的41.8%(质量分数,下同)和31.2%、21.2%和9.6%、6.5%和5.6%、6.0%和4.8%。溶剂型涂料排放VOCs的臭氧生成潜势(OFP)和二次气溶胶生成潜势(SOAP)明显高于水型涂料,OFP和SOAP的主要贡献组分均为芳香烃物质。溶剂型涂料排放的苯的长期致癌风险是水型涂料的2.6~4.6倍,均远远高于可接受的暴露风险值1×10-6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号