首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某黄金公司全泥氰化尾矿浆液相总氰化物含量为805.58 mg/L,以(亚)铁氰络合离子形式为主,将原矿浆浓密至55%情况下进行毒性浸出试验,浸出液总氰化物含量高达51.7 mg/L。为实现无害化处理,进行了一系列试验。结果表明,单一破氰工艺难以有效去除络合氰化物,破氰—沉氰联合工艺可以有效去除络合氰化物,但难以达到目标要求;向经过压滤/浓密—清水调浆处理的全泥氰化尾矿浆中加入3 g/L的破氰药剂CG105-A和2.5 g/L的沉氰药剂CG105-B即可满足氰化物处理目标要求。  相似文献   

2.
某金矿氰渣中总氰化物和总砷元素超标,研究了采用过氧化氢氧化分解氰化物、硫酸亚铁络合固砷工艺对氰渣进行无害化处理。结果表明:除氰段,过氧化氢加入量2 mL/L,反应时间2 h;固砷段,硫酸亚铁加入量0.5 g/L,过氧化氢加入量1 mL/L,硫酸加入量6.5 mL/L,反应时间1 h;经过除氰和固砷处理,所得氰渣的毒性浸出液中总氰化物质量浓度为0.25 mg/L,砷质量浓度为0.55 mg/L,满足标准要求,可进入尾矿库堆存。   相似文献   

3.
赵羚伯  赵冰  高鹏  董再蒸 《金属矿山》2022,51(7):170-174
辽宁新都黄金选金焙烧氰化尾渣总氰含量719 mg/kg,尾渣中铁矿物主要以赤铁矿的形式存在,TFe品位为35.08%。采用预氧化—蓄热还原同步提铁技术处理氰化尾渣,可实现在氰化物高效分解的同时回收铁精矿。研究结果表明,将氰化尾渣样品预先在550℃的空气气氛下焙烧25 min,可将氰化尾渣中的总氰含量降至检出限以下,同时完成对氰化尾渣的蓄热。将预氧化处理后的尾渣在还原温度560℃、还原时间30 min、CO浓度40%、总气量500 m L/min的条件下进行蓄热还原试验。焙烧产品使用棒磨机磨至-0.038 mm占82.02%,后在磁场强度143.28k A/m条件下进行弱磁选,最终得到TFe品位58.94%,回收率89.93%的铁精矿。该工艺不仅将氰化物有效分解,还实现了氰化尾渣中铁矿物的高效回收利用。  相似文献   

4.
为了探究以氰化尾渣为原料进行造锍熔炼的可能性,研究了渣型配比、熔炼温度、升温时间、保温时间和原料配比对金、银、铜回收率及锍相中金、银含量的影响。研究结果表明,在升温时间60 min、保温时间50 min、熔炼温度1250 ℃条件下,当氰化尾渣与硫化铜精矿配比4∶1、FeO/SiO2比1.8、CaO/SiO2比0.8时,金、银和铜回收率分别达到73.13%、83.95%和70.97%,金、银在锍相中含量分别达到8.29 g/t和257.40 g/t。造锍熔炼工艺处理氰化尾渣是可行的,为该类尾渣的高效环保回收利用提供了新思路。  相似文献   

5.
为对某金矿的堆浸尾渣进行无害化处理,重点考察了碱性氯化法、SO2-空气氧化法、过氧化氢氧化法等氰化物处理方法及药剂用量对该金矿堆浸尾渣脱氰效果的影响.试验结果表明:当次氯酸钙用量4.0 kg/t、氧化钙用量0.35 kg/t时,脱氰后尾渣中的CN-含量降至4.08 mg/L,达到了黄金行业氰渣污染控制技术规范(HJ 9...  相似文献   

6.
采用环保黄金选矿药剂"金蝉"对老挝琅勃拉邦省巴乌县帕奔碳酸盐类型金矿开展了浸出试验研究,结果表明:在试验条件为磨矿细度-0.074mm含量90%以上,矿浆浓度40%,石灰用量3kg/t,碱预处理时间2h,"金蝉"用量600g/t,浸出时间24h时,金的浸出率可以达到96.40%,比采用氰化浸出时浸出率提高1.4%,且药剂用量降低200g/t,浸出时间缩短12h以上。对"金蝉"浸出尾渣进行了浸出毒性分析,表明尾渣中氰化物、铜、铅、锌、砷的浸出毒性值在国家标准限值范围内,尾渣无需解毒处理,可以直接外排。经济对比分析表明采用"金蝉"浸出时每年可以降低生产成本393.15万元。  相似文献   

7.
硫化铜矿加压预氧化浸出行为研究   总被引:1,自引:1,他引:0  
含铜难处理金矿直接氰化浸出率一般较低, 氰化物耗量大, 需经预氧化浸出除去含铜杂质后再氰化浸出。以硫化铜矿物为研究对象, 在添加氯盐的酸性体系中, 开展了黄铜矿加温、加压预氧化浸出过程研究。探讨了预氧化温度、氧气压力、起始硫酸用量、起始氯化钠浓度等对黄铜矿中铜、铁浸出的影响行为。通过理论分析、浸出液化学分析以及黄铜矿预氧化浸出渣的X射线衍射测试研究了黄铜矿酸性体系预氧化浸出的反应历程和预氧化浸出渣的成分。结果表明, 氧化反应初期, 氧气分压、起始硫酸用量、氯化钠用量越大, 铜越容易被浸出, 而氧化后期氧气压力对铜浸出影响较小。预氧化浸出过程中有Cu9Fe9S16、Cu39S28及黄钠铁矾和草黄铁矾生成, 而黄钠铁矾和草黄铁矾为渣中的最终产物。  相似文献   

8.
夏家店金矿采用炭浆法浸出回收金,其氰化尾渣中-0.037 mm粒度达60%,硫化铁矿物含量低于1%,残留氰化物以游离氰为主.为使破氰尾渣中的氰化物含量满足回填利用要求,开展了固液分离洗涤法、过氧化氢氧化法、臭氧氧化法破氰效果对比试验.结果 表明,三种方法的破氰效果好坏依次为:臭氧氧化法>过氧化氢氧化法>固液分离洗涤法....  相似文献   

9.
含硫低品位金精矿浸出渣综合利用工艺研究   总被引:1,自引:0,他引:1  
对某浮选金精矿氰化浸出尾渣矿样进行了选矿试验研究。采用浮选-精矿焙烧-氰化浸出联合流程,金总浸出率可达到60.75%;精矿焙烧过程产生的SO2烟气可作为制取硫酸的原料;焙烧浸出尾渣含铁52.08%、含硫0.32%,可作为铁精矿产品销售,最终实现了资源的综合回收利用。  相似文献   

10.
针对夏家店金矿含氰尾矿特点,开展了过氧化氢氧化法、过碳酸钠(固体双氧水)氧化法破氰效果实验研究,旨在使破氰尾矿满足 HJ 943-2018《黄金行业氰渣污染控制技术规范》回填利用要求。结果表明,过碳酸钠(固体双氧水)氧化法破氰效果不如过氧化氢,而将含氰尾矿浆pH值调节至9,不添加催化剂CuSO4的条件下采用2 g/L过氧化氢破氰1 h,尾渣总氰含量可降低至0.9 mg/kg以下,尾渣浸出毒性指标满足规范回填利用要求。   相似文献   

11.
某浮选金精矿氰化浸出尾渣中Au品位1.58 g/t、Ag品位49.88 g/t,为了探索尾渣中目标矿物解离特征以及金、银未充分浸出的原因,对该浸渣开展了系统性工艺矿物学分析,结果表明,浸渣中裸露金含量占63.85%,这部分金在氰化浸出过程中属于可回收金;浸渣中有36.15%的金以包裹体形式存在,磨矿细度较粗是导致金金属流失的原因。在工艺矿物学研究基础上进行了浸出条件优化试验,确定适宜的金精矿浸出条件为:磨矿细度-0.037 mm粒级占95%、矿浆浓度50%、氰化钠浓度5 g/L、浸出时间36 h、溶氧度4.6 mg/L。在此条件下Au浸出率为99.30%,较现场生产提高1.73个百分点;银平均浸出率为64.41%,较现场生产提高24.41个百分点。  相似文献   

12.
萃取-电沉积处理含铜氰化废水回收铜和氰化物   总被引:1,自引:0,他引:1  
以季铵盐N263为萃取剂,采用萃取—电沉积工艺对铜氰废液中的铜和氰化物进行回收。结果表明,N263对含氰溶液中的铜氰配合离子有良好的萃取能力,在高碱性条件下其对铜的单级萃取率仍超过90%;饱和负载有机相经反萃可为后续电沉积提供高浓度含铜溶液;提高电沉积温度有利于铜的回收与氰化物的保护;处理后尾液可直接用于氰化浸出。通过萃取—电沉积工艺实现了废水中铜和氰化物的综合回收利用。  相似文献   

13.
老挝爬奔金矿采用环保药剂浸金工艺生产实践表明,在磨矿细度为-0.074 mm占90(±2)%,石灰用量为800(±100)g/t,环保药剂用量为420(±20)g/t条件下,最终金浸出率可保持在92%~95%左右,尾渣浸出毒性氰化物浓度符合国家标准GB5085.3-2007要求,采用尾矿干堆、回水循环利用后,尾矿库下游水体中氰化物、pH值、COD和悬浮物均符合国家污水综合排放标准GB8978-1996要求,相对采用氰化浸金工艺每年可节约生产成本559.00万元。  相似文献   

14.
以含铅锌烟尘为原料, 采用机械活化-硫酸浸出的湿法冶炼工艺分离铅锌烟尘中的金属铅及锌。着重研究了机械活化前后不同的硫酸浓度、液固比、浸出温度、浸出时间等工艺条件对原料中Zn浸出率及Pb入渣率的影响。实验结果表明, 机械活化前, H2SO4直接浸出铅锌烟尘的最佳工艺参数为H2SO4浓度175 g/L、液固比7∶1、浸出温度60 ℃、浸出时间60 min。在最佳工艺条件下, Zn浸出率达92.47%, Pb入渣率为90.30%。原料机械活化30min后, 最佳工艺条件变为H2SO4溶液浓度150 g/L、液固比5∶1、浸出温度50 ℃、浸出时间40 min。此时Zn浸出率达91.52%及Pb入渣率为95.36%。机械活化后铅锌烟尘的Zn浸出率及Pb入渣率对 H2SO4溶液浓度、液固比、浸出温度、浸出时间的依赖性明显降低。  相似文献   

15.
采用稀硫酸清洗和分段还原浸出相结合的全湿法工艺对锌电解阳极泥中有价金属元素进行综合回收处理,考察了反应时间、反应温度、硫酸加入量和葡萄糖加入量等工艺参数对阳极泥中锰的浸出效果。实验结果表明:通过稀硫酸清洗,锌电解阳极泥中锌脱除率达98.41%;在液固质量比4∶1、反应温度120 ℃、反应时间60 min、硫酸加入量1.4 g/g、葡萄糖加入量0.17 g/g的条件下,锰浸出率达97.87%;得到的残渣为富银硫酸铅渣,渣中铅含量61.45%,银含量2 224.63 g/t,实现了锰和铅、银的分离,获得硫酸锰溶液和富银硫酸铅渣。  相似文献   

16.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

17.
针对某黄金矿山氰化尾渣特点,以达到HJ 943—2018《黄金行业氰渣污染控制技术规范》中的回填污染控制指标限值为目的,分别采用CG101高效药剂和过氧化氢对氰化尾渣进行脱氰处理试验研究。主要考察了药剂投加量、反应pH值、反应时间等因素对氰化物去除效果的影响,并确定最佳反应条件。试验结果表明,采用CG101高效药剂和过氧化氢处理后的尾渣均可以满足标准要求。CG101高效药剂脱氰处理最佳反应条件为:投加量为7 g/L,控制反应pH值范围在8.0~9.0,气液比为1:50,反应时间为2 h。过氧化氢脱氰处理最佳反应条件为:投加量为10 mL/L,控制反应pH值范围在6.5~7.0,反应时间为2 h。  相似文献   

18.
氰化尾渣碱法水热浸出脱石英试验   总被引:1,自引:0,他引:1  
湖南某黄金冶炼厂的氰化尾渣含金5 g/t以上,其中的主要物相为赤铁矿、石英、白云母,石英包裹黄铁矿与金的共伴生体是导致金不能充分与氰化药剂接触的重要原因。为解决此问题,进行了氰化尾渣碱法水热浸出脱石英工艺条件研究。结果表明,氢氧化钠浓度为25%,体积质量比为2 L/kg,浸出温度为160℃,搅拌速度为400r/min,浸出时间为3 h情况下的脱石英率为57.6%。经过该工艺脱石英,金的浸出率可由4.7%提高到38.4%。  相似文献   

19.
为了实现锑冶炼砷碱渣的清洁利用及无害化处置,设计了球磨浸出—重选收锑—废碱喷淋—氧化沉砷—砷稳定固化的砷碱渣清洁利用新工艺。结果表明:常温下液固比为4:1时,砷碱渣经球磨后水浸,球磨和浸出时间分别20 min和40 min,As浸出率为96.78%,碱浸出率为97.35%,实现Sb、As和碱高效分离;为提取回收浸出渣中锑资源,通过摇床高效富集回收Sb,回收率为40%~50%,且精矿中As < 1%,Sb≥10%,可通过冶炼系统回收;基于酸碱中和原理,浸出液(高砷废碱)进入锑冶炼中烟气脱硫喷淋系统与烟气中SO2发生反应,烟气中SO2和As含量达到排放标准,实现浸出碱液和烟气SO2协同治理目的;向高砷废水加入H2O2对砷进行氧化,再加入脱砷剂(生物制剂)与砷发生沉淀反应而脱除,经两段脱砷后,废水中As含量降低至150 mg/m3, 脱砷效率分别为88.4%和92.5%;产生的脱砷渣采用铁盐稳定剂处理,在添加质量比为9%时固化体As毒性浸出浓度从348.67 mg/L降至0.65 mg/L,达到危险废物填埋场入场标准。工业扩大试验结果表明,新工艺可达到以废治废、清洁利用砷碱渣目的。   相似文献   

20.
采用氯盐浸出-提纯-结晶-制备黄丹工艺处理分银渣,基于田口方法确定氯盐浸出铅的优化条件,得到工艺参数中影响铅浸出率的主次顺序为: NaCl用量>液固比>温度>CaCl2用量/理论量。NaCl用量对铅浸出率的贡献率最大,贡献率达到61.82%,是分银渣浸铅过程最重要的工艺参数; 液固比为较重要因素,贡献率为31.27%; 温度和CaCl2用量/理论量对铅浸出率的贡献率分别为4.95%和1.96%。从分银渣中浸出铅的最优条件为: NaCl用量350 g/L、CaCl2用量/理论量0.5、温度90 ℃、液固比10∶1,在优化条件下进行3次验证性实验,铅浸出率分别为94.89%、94.75%和95.11%,数值分布稳定,浸出率较高。采用该工艺制备的黄丹纯度为99.12%,产品达到GB 3677-83二级品质量标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号