首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了研究主动悬架和四轮转向系统的协调控制,建立包含悬架系统和转向系统的整车动力学模型.基于LQR控制理论分别设计了主动悬架和四轮转向的控制器,对比分析不同加权系数时车辆在路面激励下的频率响应,研究了主动悬架和四轮转向的控制对车辆操纵稳定性的影响;针对车辆的稳态响应(不考虑路面激励的影响),采用横摆率跟踪控制策略进行前后轴主动悬架控制力的匹配控制;在主动悬架和四轮转向2个单独控制器的基础上,以主动悬架控制力的匹配为主要协调机制,设计了主动悬架和四轮转向的协调控制器,对两者的控制量进行调整.仿真结果表明,主动悬架和四轮转向的协调控制可以获得优于两者简单叠加时的整车综合性能.  相似文献   

2.
侧向风干扰下的汽车主动前轮转向最优控制   总被引:1,自引:0,他引:1  
侧向风对汽车行驶操纵稳定性有重要影响.通过分析侧向风干扰下车辆稳定性,提出基于主动前轮转向(active front wheel steering,AFS)的控制策略.AFS控制器采用线性二次型最优控制算法,以实现横摆角速度和质心侧偏角目标值跟踪.为了评价控制算法,基于MATLAB/Simulink和CarSim协同仿真环境建立整车动力学模型、单点预瞄驾驶员模型、控制器模型、道路和侧向风模型.仿真结果表明,AFS可有效提高车辆在侧向风干扰下的操纵稳定性,且控制算法对车速和路面附着系数具有良好的鲁棒性.  相似文献   

3.
为提高四轮转向汽车的操纵稳定性,提出一种联合后轮转向和横摆力矩的最优控制方法.从7自由度四轮转向整车模型出发,建立车辆转向的线性化简化模型和理想模型,并基于二次型最优控制理论推导出前馈控制器和反馈控制器.仿真结果表明:在低速和高速行驶工况下,相比传统的前馈控制,基于最优设计的前馈控制器能改善车辆的行驶姿态,而实施前馈加反馈的最优控制方法可获得更优的理想模型跟踪控制性能,实现了零侧偏角控制目标,同时横摆角速度的控制误差也很小,使得汽车具有更好的行驶轨迹、速度保持能力和稳定状态,进一步提高了车辆的操纵稳定性.  相似文献   

4.
建立了半挂汽车非线性动力学模型,分析了车辆在低附着系数路面上高速转向行驶稳定性。采用遗传算法和相平面法估计了行驶速度为16.7~25m/s时车辆稳态前轮临界转角。基于非线性反馈线性化跟踪控制理论,以牵引车横摆角速度和铰接角为控制对象,设计了半挂汽车前轮主动转向和鞍座直接横摆力矩联合控制的前馈和反馈复合控制器。车辆高速阶跃转向和单移线工况仿真结果表明:联合控制器对于提高半挂汽车横向稳定性效果较好。  相似文献   

5.
结合车辆非线性主动悬架系统数学模型,首先设计出悬架系统的线性二次型整定(LQR)最优控制器,其中控制器的加权系数利用遗传算法优化搜索获得,然后设计悬架系统的模糊控制器,进而开展LQR最优控制、模糊控制以及两者并联结合的复合控制方法对比研究.利用遗传算法对加权系数进行搜索优化,可有效解决传统LQR控制器加权系数不易确定的问题.该复合控制方法可获得相比单一控制方法更优的悬架系统控制效果,在车辆不同行驶工况条件下,能进一步降低车身垂直振动加速度、悬架动挠度和轮胎形变,明显提高了汽车的行驶平顺性和操纵稳定性.  相似文献   

6.
为充分利用轮毂电机控制精确和响应迅速的优势,提高电动车辆制动防抱死控制的稳定性,提出一种用于轮毂电机电动车辆制动防抱死系统(ABS)协调控制的改进线性二次型最优控制方法.建立电动车辆纵向动力学模型;结合复合制动系统的协调控制策略,分析现有线性二次型最优控制算法无法用于防抱死控制器设计的原因,提出一种通过构造虚拟阻尼量以及无穷小量来建立黎卡提方程的改进型线性二次型最优控制算法,并据此设计了防抱死控制器.在高附着路面、中附着路面和低附着路面3种不同行驶工况,对分别安装有改进线性二次型最优防抱死控制器和滑模防抱死控制器的电动车辆的紧急制动性能进行了仿真分析.结果表明:在不同附着系数路面行驶工况下,改进线性二次型最优控制算法能够有效提高电动汽车防抱死控制系统的控制精度和响应速度.  相似文献   

7.
在建立主动前轮转向系统模型和整车模型的基础上,针对不同路面附着系数,分别考虑汽车有无主动转向、有无主动转向干预的情况,对整车在不同车速以及不同方向盘转角输入情况下进行阶跃响应及单移线仿真分析。仿真结果表明:阶跃输入时,在不同路面附着系数及方向盘转角下,汽车在低速转向时横摆角速度、质心侧偏角增大,转向更加灵敏,在高速时横摆角速度、质心侧偏角变小,转向更稳定、更安全;单移线运动时,在高路面附着系数以及小方向盘转角下,汽车在低速变道时因主动转向干预方向盘实际转角增大,变道更加灵敏、迅速,在高速变道时因主动转向干预方向盘实际转角变小,变道更稳定、安全。  相似文献   

8.
针对路面信息对于汽车主动安全系统的重要性,提出一种基于先进汽车线控转向系统的轮胎与路面附着系数估计方法。通过建立整车模型和基于卡尔曼滤波算法设计估计器,实现了不依赖于制动系统的前、后车轮路面附着系数估计。通过中心区转向和角阶跃试验工况验证表明,提出的估计算法可以很好地实现对路面附着系数的估计,验证了算法的有效性。  相似文献   

9.
系统地分析了各种主动转向系统的性能特点,EPS能根据汽车行驶速度调节助力大小,在必要时能主动向驾驶员提出合理的转向建议或者直接进行转向干预,从而改善操作轻便性、提高汽车直线行驶性能和转向回正能力;AFS通过执行机构给转向轮叠加一个额外的转向角,实现转向系统的变传动比和对转向角的动态干预,从而改善汽车的驾驶舒适性、机动性和操纵稳定性;线控转向系统能够自动地进行转向干预,实现汽车动态偏行稳定性控制和自动道路轨迹跟踪,为最终实现汽车驾驶的全自动化提供了可能.  相似文献   

10.
对复杂工况下重型半挂车侧翻最优控制进行了研究.基于前馈与反馈相结合的方式,采用挂车主动转向和差动制动集成,应用LQR(Linear quadratic regulator)最优控制算法,提出了重型半挂车侧翻控制策略.此策略采用线性变参数简化模型,利用遗传粒子群算法优化了控制策略的控制权重系数,以协调控制策略的各子系统和实现控制策略最优控制,并进行了控制策略的硬件在环试验台实验.实验结果表明:本策略有效地提高了重型半挂车复杂工况的侧翻控制能力.  相似文献   

11.
针对高速无人驾驶车辆运动控制过程中轨迹跟踪精度和稳定性难以同时保障的问题,提出综合前馈-反馈及自抗扰控制(ADRC)补偿相结合的横向控制算法. 通过车速和道路曲率信息计算前馈稳态前轮转向角,将质心侧偏角引入航向偏差,以车辆航向角偏差和侧向偏差作为参考量进行反馈控制,通过前馈-反馈控制提升瞬态轨迹跟踪性能. 设计自抗扰控制器,通过扩张状态观测器对未建模动态和内外界干扰进行估计,通过将后轮侧偏角控制在参考值附近来补偿前轮转角,提升无人驾驶车辆的转向稳定性和控制器的鲁棒性. 不同工况下的仿真结果表明,利用该方法可以保证高速无人驾驶车辆稳定地跟踪期望路径行驶,轨迹跟踪偏差较小,对车辆参数变化和外界干扰具有较强的鲁棒性.  相似文献   

12.
利用三自由度车辆模型设计了模型预测控制器,发动机力矩PI控制器和制动力矩模糊控制器。并针对制动单移线转向行驶典型工况进行了仿真验证,结果表明,所设计的车辆稳定性控制器具有良好的控制效果,能够明显的改善车辆操纵稳定性;开发的制动力矩算法能够充分利用各个车轮的制动力,使得在发动机力矩改变和主动制动压力等输入都较小的情况下,获得较好车辆操纵稳定性。  相似文献   

13.
针对电动助力转向( EPS)作为转向执行机构的车道线保持的控制系统设计及保留驾驶员对车辆操控问题,提出基于串级模型预测控制( MPC)和EPS集成驾驶员转向的车道线保持系统. 在车道线识别视觉系统空间,建立车道线保持状态空间模型,设计基于MPC的车道线保持控制器( LMPC) . 建立EPS状态空间模型,设计基于MPC的EPS车辆前轮转角控制器( EMPC) . LMPC与EMPC经逆转向机构模型组成串级控制结构. 分析驾驶员转向对车道线保持控制的影响,进而通过保留驾驶员对车辆控制来提高处理紧急事件的能力. 仿真结果表明:在不同车速和不同曲率道路下,该控制策略均能快速消除横向位置偏差和航向角偏差,保证车辆沿着车道线行驶,具有较好的适应性和鲁棒性. 驾驶员转向可以改善车道线保持和提高车辆主动安全性.  相似文献   

14.
In recent years,the vehicle stability has beenstudied with strong interest in four-wheel steeringtechnology[1].Along withthe further research,someproblems of four-wheel steering became obvious.Be-cause the deduction of the vehicle turning mathemati-cal model is always on the basis of bicycle model,whichleads to both rear wheel steering angles are thesame while vehicle steering[2,3].Evenif the actuatorfor rear wheel steering just drives a tie rod linkage,the designfor thislinkageis rather diffi…  相似文献   

15.
伺服系统的自适应模糊滑模最优控制研究   总被引:4,自引:0,他引:4  
为提高无刷直流电机(BLDCM)位置伺服系统的动静态性能,提出了一种基于最优线性二次调节(LQR)策略的控制器设计方法.控制器由最优LQR、模糊控制器和滑模自适应调节器组成.依据状态变换和Lyapurnov稳定性定理,通过离线计算得到二次型优化控制初始值作为模糊控制器输入,由滑模自适应调节系统模糊参数降低Lyapurnov目标函数.对所设计的控制器分别作了空载、带负载及改变电机参数的仿真试验.仿真实验结果表明,该方法设计的控制器明显增强了无刷直流电机位置伺服系统的动静态性能、抗干扰能力和鲁棒性.控制输出能快速平稳地跟随参考位置信号.  相似文献   

16.
建立了车辆七自由度动力模型,基于模糊和PID设计了车辆底盘集成控制器的顶层控制器,在底层,用PI方法来控制线控转向系统;用二次规划法对主动横摆力矩进行了分配,并针对单移线转向行驶工况进行了仿真验证,结果表明,所设计的底盘集成控制器具有良好的控制效果,能够明显的改善车辆的操纵稳定性;开发的分层控制算法能够充分利用各个执行机构,使得在主动转向角和主动制动压力等输入都较小的情况下,获得较好车辆操纵稳定性。  相似文献   

17.
针对车辆主动侧倾控制问题,基于车辆侧倾与横摆响应特性分析,提出一种液压式主动稳定杆(active stabilizer bar, ASB)系统的设计方案。设计滑模控制算法,以提高车辆的侧倾稳定性。对前、后轴主动式稳定杆的反侧倾力矩进行动态分配,以改善车辆的转向特性。基于MATLAB/Simulink,建立了14自由度整车动力学模型、液压系统模型、路面输入模型等,在典型工况下分别对PID+前馈控制和滑模控制系统进行仿真研究。仿真结果表明:与传统的PID+前馈控制相比,采用滑模控制算法的液压式ASB系统在鲁棒性和适应性方面具有明显优势,有效地改善车辆的侧倾与横摆响应,进一步提高了车辆的侧倾稳定性、行驶平顺性与操纵稳定性。  相似文献   

18.
基于模糊PID线控转向系统前轮转角控制   总被引:1,自引:0,他引:1  
转向系统是乘用车的重要性能指标之一,它关系到整车的操纵稳定性以及舒适性.通过对乘用车线控转向系统结构、原理进行分析,建立了基于Simulink与CarSim的汽车线控转向系统联合仿真模型,将模糊理论应用到前轮转角控制策略中,并在整车动力学模型的基础上,设计模糊PID控制器,用于前轮转角控制.仿真结果表明:汽车低速行驶时,较小方向盘转角能实现较大的前轮转角变化,其传动比较小,驾驶员转向轻便;而高速行驶时,需要较大的方向盘转角实现前轮转角变化,传动比较大,可有效防止汽车高速抖动,提高汽车操纵的稳定性.  相似文献   

19.
Four-wheel-steering (4WS) system can enhance vehicle cornering ability by steering the rear wheels in accordance with the front wheels steering and vehicle status. With such steering control system, it becomes possible to improve the lateral stability and handling performance. In this paper, a new control method for 4WS vehicle is proposed, its rear wheels steering angle is in accordance with the angle of front wheels steering and vehicle yaw rate, and the effects of front wheels steering angle velocity are considered by adopting the fractional derivative theory. Some design specifications for control law are also given. The effects of the control method are verified by a kind of numerical scheme presented in this paper. The dynamic characteristics such as the side-slip angle and the yaw angle velocity of the vehicle gravity center are compared among three kinds of vehicles with different control methods. And the kinematics characteristics such as turning radius between 4WS and 2WS are also discussed. Numerical simulation shows that the control method presented can improve the transient response and reduce the turning radius of 4WS vehicle. Supported by Ford-China Research and Development Foundation (Grant No. 50122153)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号