首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
For general networks of pulse-coupled oscillators, including regular, random, and more complex networks, we develop an exact stability analysis of synchronous states. As opposed to conventional stability analysis, here stability is determined by a multitude of linear operators. We treat this multioperator problem exactly and show that for inhibitory interactions the synchronous state is stable, independent of the parameters and the network connectivity. In randomly connected networks with strong interactions this synchronous state, displaying regular dynamics, coexists with a balanced state exhibiting irregular dynamics. External signals may switch the network between qualitatively distinct states.  相似文献   

2.
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.  相似文献   

3.
In this study, we analyze the network effect in a model of a personal communication market, by using a multi-agent based simulation approach. We introduce into the simulation model complex network structures as the interaction patterns of agents. With complex network models, we investigate the dynamics of a market in which two providers are competing. We also examine the structure of networks that affect the complex behavior of the market. By a series of simulations, we show that the structural properties of complex networks, such as the clustering coefficient and degree correlation, have a major influence on the dynamics of the market. We find that the network effect is increased if the interaction pattern of agents is characterized by a high clustering coefficient, or a positive degree correlation. We also discuss a suitable model of the interaction pattern for reproducing market dynamics in the real world, by performing simulations using real data of a social network.  相似文献   

4.
In complex networks it is common to model a network or generate a surrogate network based on the conservation of the number of connections of individual nodes. In this paper we analyse the ensemble of random networks that are defined by the conservation of the rich-club coefficient, which measures the density of connections among a group of nodes. We also present a method to generate such surrogate networks for a given network. We show that by choosing a suitable local linking term, the random networks not only preserve the rich-club coefficient but also closely approximate the degree distribution and the mixing pattern of real networks. Our work provides a different and complementary perspective to the network randomisation problem.  相似文献   

5.
郑建风  高自友  傅白白  李峰 《中国物理 B》2009,18(11):4754-4759
In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.  相似文献   

6.
To describe the empirical data of collaboration networks,several evolving mechanisms have been proposed,which usually introduce different dynamics factors controlling the network growth.These models can reasonably reproduce the empirical degree distributions for a number of well-studied real-world collaboration networks.On the basis of the previous studies,in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors,including partial preferential attachment,partial random attachment and network growth speed.By using a rate equation method,we obtain an analytical formula for the act degree distribution.We discuss the dependence of the act degree distribution on these different dynamics factors.By fitting to the empirical data of two typical collaboration networks,we can extract the respective contributions of these dynamics factors to the evolution of each networks.  相似文献   

7.
Dynamics of the complex Ginzburg-Landau equation describing networks of diffusively coupled limit-cycle oscillators near the Hopf bifurcation is reviewed. It is shown that the Benjamin-Feir instability destabilizes the uniformly synchronized state and leads to non-uniform pattern dynamics on general networks. Nonlinear dynamics on several network topologies, i.e., local, nonlocal, global, and random networks, are briefly illustrated by numerical simulations.  相似文献   

8.
高忠科  金宁德 《中国物理 B》2009,18(12):5249-5258
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil--water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil--water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil--water flow patterns. To investigate the dynamic characteristics of the inclined oil--water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil--water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil--water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.  相似文献   

9.
Regulatory dynamics in biology is often described by continuous rate equations for continuously varying chemical concentrations. Binary discretization of state space and time leads to Boolean dynamics. In the latter, the dynamics has been called unstable if flip perturbations lead to damage spreading. Here, we find that this stability classification strongly differs from the stability properties of the original continuous dynamics under small perturbations of the state vector. In particular, random networks of nodes with large sensitivity yield stable dynamics under small perturbations.  相似文献   

10.
《Physica A》2006,368(1):294-304
The collective dynamics of large-scale computer networks remains elusive due to not only the internal adaptive behaviors of network-wide flows, but also the spatial–temporal changes in the external environment. In this paper, we investigate the time-dependent collective behavior by using a computer network model, recently developed to study space–time characteristics of congestion in large networks. We use the evolving correlation pattern, the largest eigenvalue, and the information entropy to analyze the macroscopic pattern of changing network congestion. We find the collective behavior becomes more pronounced during transient periods of pattern shifting, and the macroscopic pattern becomes gradually indistinct as the observed timescale increases to some extent. We also find that the evolving pattern of spatial–temporal correlation is more useful to reveal the time-dependent collective behavior of our model at different forcing levels.  相似文献   

11.
In this work we investigate the dynamics of networked evolutionary minority game (NEMG) wherein each agent is allowed to evolve its strategy according to the information obtained from its neighbors in the network. We investigate four kinds of networks, including star network, regular network, random network and scale-free network. Simulation results indicate that the dynamics of the system depends crucially on the structure of the underlying network. The strategy distribution in a star network is sensitive to the precise value of the mutation magnitude L, in contrast to the strategy distribution in regular, random and scale-free networks, which is easily affected by the value of the prize-to-fine ratio R. Under a simple evolutionary scheme, the networked system with suitable parameters evolves to a high level of global coordination among its agents. In particular, the performance of the system is correlated to the clustering property of the network, where larger clustering coefficient leads to better performance.  相似文献   

12.
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.  相似文献   

13.
一种全局同质化相依网络耦合模式   总被引:2,自引:0,他引:2       下载免费PDF全文
高彦丽  陈世明 《物理学报》2016,65(14):148901-148901
相依网络的相依模式(耦合模式)是影响其鲁棒性的重要因素之一.本文针对具有无标度特性的两个子网络提出一种全局同质化相依网络耦合模式.该模式以子网络的总度分布均匀化为原则建立相依网络的相依边,一方面压缩度分布宽度,提高其对随机失效的抗毁性,另一方面避开对度大节点(关键节点)的相依,提高其对蓄意攻击的抗毁性.论文将其与常见的节点一对一的同配、异配及随机相依模式以及一对多随机相依模式作了对比分析,仿真研究其在随机失效和蓄意攻击下的鲁棒性能.研究结果表明,本文所提全局同质化相依网络耦合模式能大大提高无标度子网络所构成的相依网络抗级联失效能力.本文研究成果能够为相依网络的安全设计等提供指导意义.  相似文献   

14.
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λ(N) (0 >λ(N) ≥ -1) completely determines the death island, and as λ(N) is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.  相似文献   

15.
卢文  赵海兴  孟磊  胡枫 《物理学报》2021,(1):378-386
随着社会经济的快速发展,社会成员及群体之间的关系呈现出了更复杂、更多元化的特点.超网络作为一种描述复杂多元关系的网络,已在不同领域中得到了广泛的应用.服从泊松度分布的随机网络是研究复杂网络的开创性模型之一,而在现有的超网络研究中,基于ER随机图的超网络模型尚属空白.本文首先在基于超图的超网络结构中引入ER随机图理论,提出了一种ER随机超网络模型,对超网络中的节点超度分布进行了理论分析,并通过计算机仿真了在不同超边连接概率条件下的节点超度分布情况,结果表明节点超度分布服从泊松分布,符合随机网络特征并且与理论推导相一致.进一步,为更准确有效地描述现实生活中的多层、异质关系,本文构建了节点超度分布具有双峰特性,层间采用随机方式连接,层内分别为ER-ER,BA-BA和BA-ER三种不同类型的双层超网络模型,理论分析得到了三种双层超网络节点超度分布的解析表达式,三种双层超网络在仿真实验中的节点超度分布均具有双峰特性.  相似文献   

16.
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.  相似文献   

17.
Complex networks have been studied across many fields of science in recent years. In this paper, we give a brief introduction of networks, then follow the original works by Tsonis et al (2004, 2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks. Results show that the Chinese climate network exhibits a characteristic of regular, almost fully connected networks, which means that most nodes in this case have the same number of links, and so-called super nodes with a very large number of links do not exist there. In other words, though former results show that nodes in the extratropical region provide a property of scale-free networks, they still have other different local fine structures inside. We also detect the community of the Chinese climate network by using a Bayesian technique; the effective number of communities of the Chinese climate network is about four in this network. More importantly, this technique approaches results in divisions which have connections with physics and dynamics; the division into communities may highlight the aspects of the dynamics of climate variability.  相似文献   

18.
赵金华  周海军 《中国物理 B》2017,26(7):78901-078901
Directed networks such as gene regulation networks and neural networks are connected by arcs(directed links). The nodes in a directed network are often strongly interwound by a huge number of directed cycles, which leads to complex information-processing dynamics in the network and makes it highly challenging to infer the intrinsic direction of information flow. In this theoretical paper, based on the principle of minimum-feedback, we explore the node hierarchy of directed networks and distinguish feedforward and feedback arcs. Nearly optimal node hierarchy solutions, which minimize the number of feedback arcs from lower-level nodes to higher-level nodes, are constructed by belief-propagation and simulated-annealing methods. For real-world networks, we quantify the extent of feedback scarcity by comparison with the ensemble of direction-randomized networks and identify the most important feedback arcs. Our methods are also useful for visualizing directed networks.  相似文献   

19.
The identification of general principles relating structure to dynamics has been a major goal in the study of complex networks. We propose that the special case of linear network dynamics provides a natural framework within which a number of interesting yet tractable problems can be defined. We report the emergence of modularity and hierarchical organization in evolved networks supporting asymptotically stable linear dynamics. Numerical experiments demonstrate that linear stability benefits from the presence of a hierarchy of modules and that this architecture improves the robustness of network stability to random perturbations in network structure. This work illustrates an approach to network science which is simultaneously structural and dynamical in nature.  相似文献   

20.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号