首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对高速角接触球轴承腔内润滑冷却问题,采用VOF模型和多重坐标系(MRF)法对高速角接触轴承腔内润滑油流动特性进行数值分析,分析油气出口位置对轴承腔内油相体积分数和温升的影响。结果表明:轴承腔内的油相体积分数和温升在周向上分布并不均匀,油相体积分数最低处和温升最高处位于沿轴承回转方向相对入口240°位置;从180°到240°改变油气出口沿轴承回转方向相对入口角度时,轴承腔内温升降低且油相体积分数增大,从240°到270°改变相对入口角度时,轴承腔内温升升高且油相体积分数减小;当转速升高时,出口位置对轴承腔内油相体积分数和温升影响减弱,油相分布与温升分布在周向上更为均匀。因此,选择合适的油气出口位置能够得到更好的润滑效果。  相似文献   

2.
针对角接触球轴承油气润滑中内圈润滑油含量少和保持性差的问题,提出在轴承内圈滚道设计圆凹坑形表面织构的润滑增效方法。基于气液两相流模型和多重参考系方法,建立内圈织构化角接触球轴承腔内油气两相流数值分析模型,分析内圈织构对轴承油气两相流动及润滑增效的影响。结果表明:织构化轴承可以显著提高润滑油在内圈的保持量,同时改善轴承腔内润滑油分布不均的状况;在微织构附近油气两相流动更不规则,所产生的压力梯度和速度梯度有利于提高气液两相膜的承载力;随着轴承转速的升高,内圈织构润滑增效效果相对减弱;随着供油量的增加,内圈织构润滑增效效果更加显著。  相似文献   

3.
基于油气两相流基本理论,采用 Fluent 仿真软件建立油气润滑系统喷嘴、轴承腔的油气两相流模型,分析油气两相流流经直接喷射型和内圈喷射型2种结构喷嘴后在轴承腔内的流动状态,分析内圈喷射型喷嘴的竖直管道与倾斜管道夹角及喷嘴出口结构等关键设计参数对轴承内部油气两相流分布状况的影响。仿真结果表明:内圈喷射型喷嘴具有更好的润滑效果,减小了油气润滑系统的耗油量和耗气量;竖管与倾斜管道夹角越小,越利于环状流的保持,供油均匀性越好;突扩管结构设计,有利于缓解因油气波动造成的供油不均匀。  相似文献   

4.
王保民  白晨  南洋  吴艳 《中国机械工程》2021,32(18):2197-2202
针对角接触球轴承油气润滑中的气帘效应问题,基于气液两相流理论,构建了轴承腔内油气两相流的数值分析模型,分析了轴承腔内气帘效应的形成机理及影响因素,对比分析了5种喷嘴结构对气帘效应的影响.结果表明:在高速工况下,内圈与滚动体接触区附近产生的气帘效应阻止润滑油到达润滑点;气帘效应随轴承转速的升高而加剧;使用D型喷嘴结构时,...  相似文献   

5.
滑动轴承油膜破裂位置是滑动轴承静特性之一。本文在引入新型气油两相流流变模型后,组织了一套适用于油气两相流润滑工况下滑动轴承的数值计算理论,用数值计算的方法研究了油气两相流对滑动轴承油膜破裂位置的影响,得出了一组规律性的结论。  相似文献   

6.
超高速电主轴轴承的润滑条件分析   总被引:3,自引:0,他引:3  
通过分析超高速电主轴轴承内部润滑的基本特点,对主轴轴承在超高速运行条件下的内部润滑状态进行了分析,讨论了供油量、润滑方式、润滑油和轴承内部零件的运动等因素对轴承内部弹流油膜、温升等润滑状态的影响,在此基础上提出了超高速电丰轴轴承润滑的要求和基本条件,并进行了实际应用试验。  相似文献   

7.
随着高速加工技术的快速发展,油气润滑技术应用于高速机床/磨床电主轴轴承已成为目前发展的普遍趋势。概述近年来油气润滑系统应用于高速轴承的研究现状及应用进展,总结油气润滑系统组成、主要影响因素、油气两相流形成机制、润滑状态、关键部件研制等油气润滑系统的研究成果和应用现状,阐述油气润滑系统的设计难点,并提出油气润滑系统研究的未来发展方向。  相似文献   

8.
基于轴承腔内油气两相流流动模型,采用VOF方法和MRF模型对高速角接触球轴承腔内油气两相流的流动情况进行数值计算,重点分析轴承腔内和滚珠表面的压力分布,以及转速、初始空气压力等参数对压力分布的影响。结果表明:轴承腔内的压力因滚珠与保持架的搅动作用,整体处于负值,并且在局部区域形成漩涡;随着转速的增加,腔内压力在负方向上逐渐增大,内外圈之间的压差也随之增大;沿着滚珠自旋方向,压力在负方向上逐渐增大,到滚珠与内圈接触点附近达到最大值,这有利于将润滑油吸附到滚珠表面,从而得到更好的润滑效果;初始压力越大,腔内压力在数值上也越大,分布不均匀性程度随之加剧,初始压力的选取对轴承润滑有很大影响。  相似文献   

9.
说起来,润滑的原理并不复杂,只要在作相对运动的摩擦面之间建立一层薄薄的油膜,只要这层油膜足够稳固、有足够的承载能力以防止摩擦面之间直接接触,那么润滑作用也就建立起来了。显然,供油量过多会导致过润滑,多余的油量并不真正起润滑作用,反而会导致轴承发热,油气润滑跟稀油润滑大不相同的是  相似文献   

10.
研究润滑油中混入水后对轧机油膜轴承热弹流润滑的影响。建立油水两相流体的数学模型,以及轧机油膜轴承热弹流润滑的数学方程,利用多重网格法及多重网格积分法对上述方程进行求解,并分析润滑膜压力、膜厚随含水量、主轴转速、轧制力的变化关系。结果表明:与纯油润滑相比,油水两相流体润滑具有更好的润滑特性,且随着含水量的增加,膜厚增大,承载能力增强;随着主轴转速的增加,膜厚增加,承载能力减小;随着轧制力的增加,膜厚减小,承载能力增强。在油水两相流润滑条件下,热效应对于轧机油膜轴承弹流润滑的影响不能忽略。  相似文献   

11.
气液两相流体冷却润滑技术-油气润滑   总被引:6,自引:2,他引:6  
1油气润滑技术的发展简史通过润滑来减少摩擦,这在古埃及时代已经开始了。人们利用木棍来运输大石块,并在木棍上洒上水。人们也早就认识到,如果在轴上涂上油脂,车轮就不会吱吱作响,润滑能减少轮轴和轮子之间的磨损。  相似文献   

12.
图1是油气流形成的示意图,单相流体油和单相流体压缩空气混合后就形成了两相油气混合流。两相油气混合流中油和压缩空气并不真正融合,而是在压缩空气的流动作用下,带动润滑油沿管道内壁不断地螺旋状流动并形成一层连续油膜,最后以精细的连续油滴的方式喷到润滑点。也因此,在油气润滑系统中,  相似文献   

13.
14.
径向游隙直接影响角接触球轴承内部两相流的分布以及热特性。为探究不同径向游隙下角接触球轴承油气润滑两相流热特性变化规律,基于两相流理论以及轴承换热机制,建立数值分析模型模拟轴承腔内油气两相流流动特性,分析径向游隙和轴承运行工况对轴承腔内流场分布以及温升的影响,并通过轴承温升试验验证了仿真结果。结果表明:油气两相流中油相受离心力影响主要分布在轴承外圈,径向游隙增大使得油相体积分数减少;轴承温升随着径向游隙增大而减少,一定程度上增大径向游隙可以减少轴承生热量。研究结果为探究角接触球轴承油气润滑热特性以及改善轴承腔结构参数提供了参考。  相似文献   

15.
图3是一套简单的油气润滑系统结构示意图,它的工作原理如下:根据预先设定的工作周期,由监控装置发出信号,润滑泵1起动,将润滑油输送到递进式分配器—油气混合块部分2。同时,空气管道中的电磁换向阀打开并接通压缩空气,压缩空气在油气混合块中和油进行混合后形成油气流并通过油气管道输  相似文献   

16.
由于TURBOLUB油气分配器自身也具有分配油量的作用,因此可以减少系统中分配油量的元件如递进式分配器(活塞)的数量,不仅使一套系统润滑数千个润滑点成为现实,也减少了系统中的运动部件数量,使系统运行更为可靠、故障率更低。在某些场合尤其是润滑点少量的情况下,甚至可以弃用递进式分  相似文献   

17.
油和压缩空气在油气混合块中进行混合。图7是递进式分配器和油气混合块集成在一起的情况,块的上部是递进式分配器,而下部是油气混合块,递进式分配器输出的油直接进入油气混合块中和压缩空气混合,输出的就是油气了。在REBS没有发明TURBOLUB油气分配器以前,早期的油气润滑系统大多采用这种结构,尤其是润滑点少量的场合,一般采用“点对点”的方式,即递进式分配器的每一个出口输出的油量只供  相似文献   

18.
研究轧机油膜轴承润滑油混入冷却水形成的油水两相流对轴承等温弹流润滑的影响。建立油水两相流体模型和弹流润滑方程,研究油膜轴承在等温条件下的润滑特性,分析流体润滑膜的压力、膜厚随含水量、滑滚比、轴颈间隙、主轴转速和轧制力的变化关系。结果表明:随着含水量的增加,油水两相流体由油包水流型转化为水包油流型,压力变化不大,膜厚先增加后减小,油包水流型作为润滑剂时润滑性能最优;随着滑滚比和轧机油膜轴承主轴转速的增加,压力减小、膜厚增加,而随着轴颈间隙和外部轧制力的增加,压力增加、膜厚减小。  相似文献   

19.
今天,世界上每个领域都有技术进步与创新,技术进步与创新的真正意义在于提高劳动生产率并降低生产成本,REBS油气润滑作为一种创新的润滑方式和润滑理念同样展示了这一意义——企业只有不断通过采用新技术来提高劳动生产率并降低生产成本,才能在市场上,尤其是全球经济一体化的今天维持竞争力。  相似文献   

20.
高速电主轴轴承的油气润滑及其应用   总被引:9,自引:0,他引:9  
杨柳欣  李松生 《轴承》2003,(3):23-25
油气润滑是轴承润滑的理想方式,在高速电主轴行业,油气润滑技术以其众多的优点成为高速主轴轴承润滑方式的首选。本文以高速电主轴的实际应用阐述油气润滑的优越性及其如何合理应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号