首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
某深基坑工程的监测分析与变形特性   总被引:12,自引:0,他引:12  
通过对某深基坑支护结构的水平位移、深层水平位移、建筑物沉降、立柱沉降和支撑轴力的监测,探讨了水平位移、沉降与内力等变化规律,深入研究了水平位移的变形特性。监测分析结果表明:基坑的水平位移随开挖时间的渐变过程近似分段抛物线型;周边建筑物沉降随开挖时间的递增而增大,增长速度前慢后快;深层水平位移大小及分布与基坑开挖深度、支护结构体刚度、支撑刚度、地质状况、地面超载等因素有关。由监测结果可知,该基坑工程支护结构的基坑变形控制设计方案合理,效果良好,满足了设计和环境的要求。  相似文献   

2.
越来越多的基坑开挖邻近既有地铁线路,这就对基坑支护及既有地铁线路的保护提出了极高的要求。基于天津某邻近既有地铁线路的基坑工程实例,对实测数据进行分析,得到:使用对撑可以减小围护结构变形且对撑的线刚度对其约束变形的能力影响很大;随着基坑开挖的进行,基坑围护结构水平位移逐渐变大,变形模式也由悬臂形逐渐转变为内凸形;基坑开挖会对邻近既有地铁线路产生影响,由基坑开挖引起的隧道结构隆起变化规律受地下连续墙变形模式影响较大。  相似文献   

3.
基坑开挖引起邻近既有隧道变形的影响区研究   总被引:1,自引:0,他引:1  
既有隧道会因邻侧基坑开挖卸荷产生变形,对隧道正常使用和安全产生影响,其变形控制至关重要。基于大量工程案例资料,以天津市某邻近既有隧道深基坑实测资料为基础,采用考虑土体小应变刚度特性的有限元方法对基坑施工对坑外既有隧道变形影响规律进行了参数分析,结合不同规范变形控制标准,划分了不同围护结构变形模式和最大水平位移条件下坑外既有隧道变形影响区。研究结果表明,坑外变形影响区大致可简化为直角梯形形状。根据实际工程基坑围护结构可能产生的变形形式、最大变形和隧道与基坑的相对位置,可根据该影响区预估隧道可能产生的变形。围护结构变形模式和变形控制值相同条件下,变形影响区范围随着围护结构最大水平位移增大而增大;围护结构最大水平位移和变形控制值相同条件下,围护结构悬臂型变形模式下变形影响区范围最小,内凸型和复合型次之,踢脚型最大。  相似文献   

4.
以郑州中业大厦基坑工程监测项目为例,研究基坑开挖对周边建筑物、边坡围护结构的影响及对策。本工程围护结构全部采用桩锚支护结构,事实证明桩锚支护结构对本工程的坡顶变形及周边建筑物沉降控制效果较好,对基坑工程的现场监测数据进行分析,表明边坡沉降、边坡位移、锚索内力、深层水平位移及周边建筑物、道路的变形在安全范围内,支护方案、围护结构科学可靠。  相似文献   

5.
基坑开挖伴有扰动性影响,对于周边临近既有建筑物的基坑工程,控制基坑变形及建筑物位移尤为重要。本文以深圳市南山文理学校项目深基坑开挖为例,针对深基坑异形且紧邻既有建筑物的特点,根据增大基坑阳角处侧向支撑的刚度和承载力及提高异形部位和紧邻既有建筑物部位设计安全冗余度的原则,优化了基坑支护体系,增设了多项施工变形控制措施,加密了基坑局部监测点布置。通过对基坑施工监测数据的分析证实该方案实施效果良好,并且总结了基坑设计与施工变形控制的技术措施,为紧邻紧邻既有建筑物深基坑支护设计及施工提供借鉴参考。  相似文献   

6.
对南京地铁过江隧道中间风井开挖时的地表沉降、深层土体位移、支撑轴力、地下水位及墙顶水平位移与沉降的监测结果进行分析,并着重对比研究2次管涌期间各监测项目的变化情况,监测结果表明:地表沉降最大值位于距离基坑边0.5倍基坑深度处,开挖对周边影响范围为2倍基坑深度;支撑轴力与开挖工况、温度、降雨和水位有着密切关系;当基坑开挖到0.75倍基坑深度时,沉降明显变大,此时此处冠梁、支撑的截面和刚度对控制基坑变形至关重要,适当增加刚度或截面可以有效减小基坑变形及地表沉降。地下水位反映围护结构止水效果,受工况、降雨和长江水位等影响,有一定滞后性,可通过监测地表沉降初步判断涌砂的来源。  相似文献   

7.
《低温建筑技术》2020,(6):103-107
文中结合杭州某深大基坑工程,介绍了该工程所在场地土层条件及基坑支护形式及基于开挖全过程中的实测数据,系统地分析了围护结构的变形、土体水平位移、建筑物沉降及路面裂缝的变化规律。研究发现深层土体的开挖比浅层土的开挖能产生更大的应力,使得基坑产生更显著的变形。随基坑开挖深度的增加,围护结构挠曲变形加速增大。围护结构及土体的变形主要发生在开挖阶段,随底板的浇筑,变形逐渐趋于稳定。研究成果可为同类工程提供一定参考。  相似文献   

8.
当基坑开挖深度相同,而围护结构及支撑系统的差异将使得围护结构将发生不同形式的变形,坑外土体的位移及邻近建筑物的变形也将存在相应差异。针对不同围护结构变形形式对应的基坑邻近建筑物的变形开展精细化分析,算例结果表明:当围护结构发生踢脚、内凸或复合形式的变形时,紧邻基坑的建筑物将发生显著的下凹挠曲变形,且下凹挠曲程度随沉降槽的近基坑侧土体沉降值增大而减小,尤其是当围护结构发生踢脚和内凸变形时,建筑物的下凹挠曲变形最为显著,并产生显著的墙体拉应变,此时邻近的建筑物是最为不利的;而对于任意变形形式的围护结构,当建筑物距基坑距离约为 1 ~ 1.5 倍开挖深度时,均将产生显著的上凸挠曲变形,所引发的建筑物墙体拉应变亦较为显著,即该位置处的建筑物都将是不利的。  相似文献   

9.
对某深基坑开挖全过程中围护桩的水平位移进行了实测,由于水平支撑提供的支撑刚度不同,不同位置处的围护桩可产生不同的水平位移分布模式,且最大水平位移值也存在明显差别。通过建立考虑土体小应变的有限元模型,针对4种典型围护结构变形模式引起的坑外深层土体位移场变化特点进行分析,结果表明:即使围护结构最大水平位移相同,由于侧移分布模式不同,基坑外地表和深层土体的竖向及水平位移场均可存在较大差别,从而可能对环境产生不同程度的影响。围护结构在内凸型和复合型模式下,坑外深层土体竖向变形可分为凹槽形沉降区、三角形过渡区和隆起区,而深层土体水平位移场可分为弓形变形区、变形过渡区以及悬臂形变形区;悬臂型模式下坑外深层土体竖向位移场只存在三角形变形区和隆起区,而水平位移场则全部呈悬臂形;踢脚型模式下的竖向位移和水平位移影响范围均为最大。在实际工程中除控制围护结构最大变形值外,尚应根据周围环境特点合理控制围护结构变形模式,并尽可能避免出现踢脚模式变形。  相似文献   

10.
魏立勇 《建筑技术》2024,(6):746-750
以某邻近既有建筑的深基坑工程为例,利用有限元软件PLAXIS 2D建立数值模型,研究了硬化土小应变模型(HSS模型)与摩尔库伦模型(MC模型)下基坑开挖过程中地连墙水平位移与地表沉降与实际监测数据的差异,并基于HSS模型分析了基坑开挖过程中围护结构水平位移与既有建筑的沉降,同时,本文分析了既有建筑与基坑之间距离以及既有建筑的层数对既有建筑倾斜率的影响。分析结果表明:HSS模型相对于MC模型可以更加精确的预测基坑开挖工程中的变形情况;采用HSS模型模拟时,围护结构的水平位移为“内凸形”,随基坑深度的增加,围护结构最大水平位置不断下移、最大水平位移逐渐增大,围护桩最大水平位移为24.2 mm,建筑物最大沉降为11.9 mm,均满足设计要求;基坑与建筑物之间距离越小,建筑物层数越高,邻近建筑物倾斜率越高,建筑物每增加一层,其倾斜度约增加0.58×10-4。  相似文献   

11.
孙海员 《建筑技术》2023,(11):1284-1287
多个基坑近邻施工越来越常见,彼此间不同施工工况对变形影响较大。以武汉市地铁青菱站近邻基坑群工程为例,针对不同开挖顺序对基坑群变形影响问题,采用数值模拟的方法对不同基坑围护结构深层位移和基坑周边土体沉降的变形特性进行了分析。研究结果表明:在基坑群开挖过程中,基坑坑间土体沉降叠加效应受坑间距影响较大;不同开挖顺序对基坑外边侧围护结构变形和周边土体沉降影响不大,但对基坑内边侧围护结构变形有一定影响。3个基坑同时开挖基坑内边侧围护结构位移量最大,基坑依次顺序开挖位移量最小,先开挖2个基坑再开挖另一个基坑位移量位于二者之间。相关结论可为基坑群开挖顺序的设计提供参考。  相似文献   

12.
徐化新 《福建建筑》2022,(12):72-79
基坑开挖卸荷容易导致侧方既有隧道发生水平位移和沉降,进而诱发环缝错台、管片开裂以及局部渗漏等灾害。依托某环形内支撑深基坑工程案例,通过建立基于流固耦合的三维有限元模型,对比分析单圆环形内支撑和双圆环形内支撑下围护结构的变形和应力响应情况,并结合现场监测数据,深入研究实际工程中双圆环形内支撑深基坑开挖对侧方既有隧道变形的影响。结果表明:相较于单圆环形内支撑,双圆环形内支撑受力更加合理,避免了局部应力集中,并且能够有效减少基坑围护结构的水平位移。此外,围护结构以及隧道结构的变形主要由基坑开挖卸荷引起,监测结果显示基坑开挖对侧方隧道的影响主要表现为水平偏移和沉降,最大变形均满足现行隧道结构保护规范的控制值要求。  相似文献   

13.
王冰玲 《城市住宅》2018,(1):102-105,108
基坑开挖会对邻近既有隧道及土体变形特性产生重要影响。基于Midas GTS420研究基坑开挖对周边土体、支护结构及邻近双向水平隧道的变形特性影响。数值模拟结果表明:周边土体沉降主要发生在开挖基坑长边中部及拐角部位,最大沉降位置位于围护结构外约1/3基坑宽度处;围护结构的最大水平位移位于基坑长短边拐角处,当基坑开挖深度接近于临界深度时,水平位移迅速增大;隧道的横向位移存在一个临界埋置深度,其深度约9m。  相似文献   

14.
利用Plaxis建立二维有限元模型,对既有建筑物地下增层基坑开挖进行数值模拟分析,计算结果表明,基坑开挖及降水引起的中间区域既有桩基几乎无水平位移,边桩水平位移相对较大(mm数量级);基坑开挖引起工程桩隆起,基坑降水引起工程桩下沉。同时提出了有利于减少既有桩基变形的措施:适当增大围护、支撑刚度,工程桩设置联系杆(拉结杆)及基坑按需降水等,这一结论可为类似工程提供借鉴作用。  相似文献   

15.
北京某深基坑工程施工监测与成果分析   总被引:4,自引:0,他引:4  
本文介绍了北京某深基坑工程的支护设计、施工和监测方案,并对主要监测结果进行了详细分析。监测结果表明,在深基坑支护工程中,时空效应显著,基坑开挖初期围护结构及地表会发生向上的位移,基坑深层土体开挖会引起较大的桩体位移和土体沉降,施工中应严格控制深层土体开挖无支撑暴露的时间,及时架设支撑及浇注混凝土底板,减小土体侧向位移及地表沉降,由于基坑施工周期较长,温度的季节性变化对基坑围护结构的变形影响较大。  相似文献   

16.
对某深基坑工程开挖施工期间基坑内外位移、沉降、支撑内力、地下水位等监测分析,研究表明:土体的深层水平位移随开挖深度的增加而增大,且与内支撑密度密切相关;基坑坡顶水平位移、坡顶沉降及土体深层水平位移三者变化规律相同,可互相验证;基坑北侧的地表沉降曲线呈凹槽形分布,基坑南侧的地表沉降曲线呈三角形分布;基坑周边地表沉降情况受地下水位变化影响,且具有一定滞后性;台风降雨对于基坑内支撑的轴力及基坑变形影响很大。  相似文献   

17.
通过对软土地区某停滞深大基坑16个月监测数据的整理分析,研究了季节性温度变化对环梁支撑受力、围护结构位移及基坑周边环境的影响规律。该基坑近似呈矩形,长178 m,宽148 m,采用多道钢筋混凝土圆环支撑结合中部对撑的布置形式。监测结果表明:环梁支撑轴力随着夏季到来持续增大,进入冬季后又逐渐减小,支撑内力变化受温度升降趋势影响显著;温度降低阶段,围护桩明显向坑内移动,且桩顶水平位移增量与温度变化近似呈线性关系,降温引起的多道水平支撑体系的围护结构变形增量呈倒三角变形模式;围护结构水平位移的增加,进一步加剧了坑外土体沉降,对基坑的整体变形以及基坑周边环境造成不利的影响。另外,三维有限元分析表明,围护结构刚度对支撑的温度应力影响很大,土质条件越硬,温度对支撑轴力的影响越大。  相似文献   

18.
通过对温州市城区2007年以来基坑工程(220个)的支护选型进行统计分析,获得了不同工况下的基坑选型规律:深度4 m及4 m以内的基坑主要采用土钉墙支护形式;超过4 m深度的一般采用围护结构加内支撑支护形式,围护结构一般采用钻孔灌注桩,且多选用水泥土搅拌桩作为围护桩外侧止水结构,其中,深度7.5 m以内的一般采用1道内支撑,超过7.5 m的则采用2道内支撑。在此基础上,再通过对典型支护类型的现场实测数据分析,获得了坑外深层土体变形规律,即:随着基坑开挖深度的增加,深层土体最大水平位移值不断增大,土体内部位移加剧;在地下室底板混凝土具有支撑强度后,坑外深层土体水平位移量趋于稳定;深层土体最大变形点发生在坑底以上0.5~1.0 m处。  相似文献   

19.
采用PLAXIS有限元计算程序,对福州某紧邻国铁站房设置地铁车站的围护结构进行了有限元分析,得出了地铁基坑开挖对既有站房影响的基本规律。结果表明,围护桩+内支撑+锚索的围护结构形式在基坑开挖过程中围岩体变形较小,满足对既有站房保护的变形控制要求。为确保施工过程中既有站房基础沉降及水平位移可控,可结合基岩裂隙、节理发育情况及时跟踪注浆,并对站房单桩承台基础补打树根桩等加强措施。  相似文献   

20.
软土地区深基坑开挖变形监测   总被引:2,自引:0,他引:2  
基坑开挖将不可避免的改变原有土层的力学性质。结合温州东海广场深基坑开挖工程,介绍了该工程的场地地质条件及支护方式。在此基础上,分析了基坑开挖对周边建筑物沉降、道路裂缝、土体深层水平位移、内支撑轴力及地下水位的影响,得出以下规律:基坑开挖将引起周边建筑物的沉降,该沉降值与周边建筑物的基础形式有关;开挖对桩基础影响不大,对条形基础则产生较大影响;随着开挖的进行,道路裂缝宽度缓慢增大,并趋于稳定;基坑开挖完毕时,坑外土体深层水平位移呈现两边小,中间大的趋势,但内支撑轴力变化不大;在整个基坑开挖过程中,地表水位变化不太明显;测斜管应紧贴基坑维护结构。可以为类似工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号