首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用高能球磨制粉、直流热压成型的方法制备Sn掺杂Bi0.5Sb1.5Te3合金的块材试样(Bi0.5Sb1.5)1-xSnxTe3 (x=0, 0.25%, 0.5%, 1%), 对试样的物相、微观结构和热电性能进行分析。X线衍射图谱表明所有样品的物相均为Bi0.5Sb1.5Te3, Sn掺杂后没有出现第二相。扫描电镜图像表明Sn掺杂对晶粒尺寸的影响不大, 因而晶格热导率变化不大。通过Sn的掺杂, 试样在提高电导率的同时降低了塞贝克系数, 这主要是由于Sn掺杂对载流子浓度的影响。试样Bi0.5Sb1.5Te3的量纲一热电优值ZT在348 K达到1.16, 在423 K之前均大于1, 比传统方法制备的BiSbTe合金的ZT平均值提高了20%, 这有利于热电的实际应用。  相似文献   

2.
热电材料可直接在电能与热能之间直接转换,其在室温附近的应用广受关注。材料性能可由与效率正相关的热电优值ZT衡量。高ZT值热电材料需同时具有较低的晶格热导率、恰当的载流子浓度、合适的能带结构和理想的微观组织。本文综述了Bi2Te3系、α-MgAgSb以及half-Heusler合金等几种高ZT值室温热电材料的最新研究进展,并就未来研究做出展望。Bi2Te3基材料是目前为止研究最为广泛的室温热电材料。Bi2Te3空间群为R3m,在c轴方向形成以共价结合的Te-Bi-Te-Bi-Te为重叠单元的层状结构,单元与单元之间以范德华力结合。这一晶体结构使得该材料禁带宽度为0.15 eV,价带顶或导带底为6重能谷,从而同时具备了较高的电导率和Seebeck系数。也由于该材料中包含了重元素和弱键合,其晶格热导率比较低。因此,以Bi2Te3为基础形成了性能较好的p型(Bi2Te3)-(Sb2Te3)和n型(Bi2Te3)-(Bi2Se3)赝二元体系。p型Bi2Te3基材料方面,受超晶格材料极低热导率(~0.22 Wm-1K-1)的启发,任志锋和陈刚联合课题组率先用简单的球磨加快速热压工艺在p型Bi0.4Sb1.6Te3块体材料中获得了5~50 nm的晶粒,增强了声子散射,降低了晶格热导率,使ZT峰值达到了1.4。自此以后,多种引入纳米复合物以增强声子散射的研究得以开展。2015年,韩国Kim课题组甚至将Bi0.5Sb1.5Te3晶格热导率降低到了0.33 Wm-1K-1,使该材料ZT峰值达到1.86,遗憾的是该结果未能被其他课题组重复。最近有研究表明,这一优异性能并非来源于Kim课题组所称的对中频声子的有效散射,而是忽略了各向异性导致的。另一个有趣的现象是性能优越的p型(Bi1-xSbx)2Te3材料通常在x=0.75附近出现。以前曾有人认为这是由于此时价带平坦化后有效质量增加的原因,但G. J. Snyder等认为这是由于x=0.75时,第一价带与第二价带重叠,从而增加了参与输运的能带数量输运导致的。数据表明,这一模型与实验结果更吻合。相对于Bi2Te3基p型(Bi2Te3)-(Sb2Te3)材料,n型(Bi2Te3)-(Bi2Se3)材料则性能略低(ZT~1.2)。这主要是因为:该类p型材料可通过调控晶格缺陷来调控载流子浓度,而n型则通常只能通过掺杂来调控;p型材料在Bi/Sb为0.5/1.5时声子散射最强烈,同时还发生能带聚集;p型材料中电导与热导各向同向,而n型则各向异性,使得组织结构纳米化对降低n型材料热导率效果甚微。α-MgAgSb是2014年才进入人们视野的高性能室温热电材料,具有四方晶系结构,兼具低晶格热导率和高功率因子,因而峰值ZT达到1.4。近年来,对该材料结构的深入研究揭示了其晶格热导率低的原因:晶胞体积大、Ag-Sb间的弱键合、高密度Ag空位、Ag+和Mg2+的迁移引起的横声子模软化、U过程中强烈的非谐作用(大Grüneisen因子)、宽频声子散射等。独特的晶体结构决定了α-MgAgSb独特的能带结构。价带顶附近,其聚集能谷数为8,而导带底附近则为1,因而,仅p型α-MgAgSb热电优值较高。对该材料,通过掺杂提高载流子浓度以优化功率因子是必要的手段。在众多掺杂元素中,Li掺杂效果最好,可使载流子浓度和功率因子分别达到~1.2 ×1020 cm-3和~24 μW cm-1 K-2。由于其优异的性能和与Ag电极之间的低接触电阻,单臂p型α-MgAgSb器件拥有目前为止室温附近最高的热能-电能测试效率8.5%。Half-Heusler是另一类在热电发电领域极具前景的材料,除了具有较高的热电性能外,该材料稳定性和机械性能还异常好。最近的研究表明,常规材料中占主导作用的电子-声子耦合在该材料中被大幅度抑制是其高功率因子的起源;p型ZrCoSb和n型ZrNiSn功率因子分别可达~30和~50 μW cm-1 K-2,而p型Nb0.95M0.05FeSb (M=Ti, Hf, Zr)更是高达100 μW cm-1 K-2。然而,由于该类材料热导率很高,使得其室温ZT仅0.3左右。尽管室温热电材料研究取得了明显的进展,但仍需在以下方面进行攻关:降低n型Bi2Te3基热电材料热导率使其ZT值可与p型同系材料匹配;寻找可在机械性能、热电性能上与p型α-MgAgSb匹配的n型MgAgSb或类似材料;降低NbFeSb基材料热导率及寻找其n型配对材料。  相似文献   

3.
采用真空熔炼、高能球磨、冷压成型和气氛烧结工艺制备了Pb掺杂的P型Bi_(0.5)Sb_(1.5)Te_3块体热电材料.利用X射线衍射仪(XRD)、扫描电镜(SEM)、热电参数测试系统(Namicro-3)、激光热导仪(LFA-467)和DSC等测试技术,研究了Pb掺杂对Bi_(0.5)Sb_(1.5)Te_3热电材料的物相组成、表面形貌和热电性能的影响.结果表明:Pb掺杂能够抑制单质Te的析出及Pb原子取代Bi/Sb原子的位置,产生空穴,载流子浓度增大,电导率升高,Pb原子半径与Bi/Sb原子半径不同,增加晶格畸变,降低热导率,从而有效提高Bi_(0.5)Sb_(1.5)Te_3热电材料的综合性能.在300K时,Pb_(0.003)Bi_(0.497)Sb_(1.5)Te_3的电导率为8.35×10~4 S/m,塞贝克系数为179μV/K,热导率为0.716 W/(m·K),热电优值达到1.122.  相似文献   

4.
通过粉末烧结、高能球磨和直流快速热压相结合的工艺制备高熔点half-Heusler合金TaCoSb,热电性能测试结果表明TaCoSb是一种n型热电材料,电导率、热导率、塞贝克系数、ZT值在973 K时分别为0.58×105 S·m-1、3.8 W·m-1 K-1、-110 μV· K-1、0.18。此外,本文还研究了Sb位进行Sn掺杂对TaCoSb热电性能的影响,实验结果发现:Sn掺杂使得样品的热导率和电导率同时下降,塞贝克系数略微增加,功率因子有所降低,最终材料的ZT值未见明显提升;鉴于TaCoSb的室温电导率较低,应该往Sb右侧方向掺杂改性。  相似文献   

5.
Mg2(Ge, Sn)固溶体是一种环境友好型的中温(500~800 K)热电材料。目前n型Mg2(Ge, Sn)热电材料的ZT值已经高达1.4,但p型Mg2(Ge, Sn)的ZT值仅为0.5。本文在p型Mg1.92Li0.08Ge0.4Sn0.6中添加了少量Si元素以在材料中形成富Si相,利用其与基体的界面过滤低能载流子、降低热导率。采用两步固相反应、球磨和热压的方法制备Mg1.92Li0.08Ge0.4Sn0.6-xSix (x=0, 0.025, 0.05, 0.075, 0.1)样品,通过测试样品的热电输运参数,分析Si添加物对样品热电输运和性能的影响。结果表明:Si添加物能显著提高基体的功率因子,同时有效降低晶格热导率和电子热导率;最终,Mg1.92Li0.08Ge0.4Sn0.525Si0.075的ZT最大值在723 K达到0.75。  相似文献   

6.
组成元素无毒且储量丰富的AgSbSe2热电材料因其本身低的热导率使其具有高热电应用潜质,但低电导率导致ZT值低。本文给出了AgSbSe2热电材料的晶体结构、电子结构及基本物性;综述了近年来提高该材料热电性能的主要策略,如掺杂、空位、复合等;并指出提高载流子迁移率是进一步提高AgSbSe2热电性能的关键。  相似文献   

7.
NASICON型固态电解质磷酸锆锂(LZP)具有优异的结构稳定性和性能可靠性,但其在室温下的锂离子电导率较低,限制锂离子的传输。针对上述问题,采用溶胶凝胶法对磷酸锆锂电解质材料进行阳离子掺杂,提高材料的电导率,进而提升锂离子在材料中的输运能力。同时,将掺杂的磷酸锆锂电解质对电极进行修饰,提升电极本身的锂离子输运性能。探究了离子掺杂电解质对电极的锂离子扩散动力学性能的影响机理。实验结果表明,LiTi0.25Zr1.75(PO4)3对电极的锂离子扩散动力学性能提高最为显著,锂离子扩散系数达到3.25×10-14cm2·S-1,是未修饰电极的2.95倍,同时在5C倍率下,LiTi0.25Zr1.75(PO4)3修饰的电极比未修饰电极比容量提高了25.48 mAh·g-1。  相似文献   

8.
Mg2Si基半导体是重要的中温热电材料,具有原料丰富、价格低、无毒等优点;其载流子有效质量和迁移率均较高,有望获得优异的电性能,近年来倍受关注。该文综述了Mg2Si基材料的研究进展,重点探讨了提高其热电性能的措施,对比了不同制备方法的优缺点,最后指出了今后的研究方向。分析表明,目前研究主要集中在n型体系,应加强对p型材料的性能优化探索。掺杂对提高热电性能的效果更显著,通过制备工艺的优化,将掺杂和纳米化两种措施结合,可进一步有效优化。  相似文献   

9.
为了提高MgTiO3-(Ca0.8Sr0.2)TiO3(MT-CST)微波介质陶瓷的品质因数,通过SEM、XRD、拉曼光谱仪与XPS分析手段,研究了Ce掺杂对MT-CST陶瓷成分晶体结构和微波介电性能的影响.结果表明:高价Ce3+取代Mg2+可使氧空位缺陷得到有效抑制,从而降低了微波介质损耗,可使品质因数得到较大提升.制备的陶瓷具有优异的微波介电性能:介电常数为20.8,品质因数为61 000 GHz,谐振频率温度系数为-4.99×10-6/℃.  相似文献   

10.
用固相反应法制备(Ca1-xYx)Mn O3(x分别为0、0.03、0.05、0.07、0.09 mol)热电材料,用自制设备测试样品的热电性能,研究Y3+掺杂对Ca Mn O3热电性能的影响。结果表明:Y3+掺杂可以有效地改善样品的热电性能,其中(Ca0.91Y0.09)Mn O3样品的热电性能较优;当高温端温度为880 K时,测得电阻率为74 mΩ·m,Seebeck系数为-112μV/K,输出功率达到68 m W。  相似文献   

11.
为研究柔性与热电性能优异的聚合物基薄膜,以聚醚砜(polyether sulfone, PES)柔性滤膜为基体,通过气相聚合法,构筑具有亚微米多孔结构的聚(3, 4-乙烯二氧噻吩)-对甲苯磺酸盐(poly(3, 4-ethylenedioxythiophene)-tosilate, PEDOT-Tos)/PES复合热电柔性薄膜,分析氧化剂的质量分数(10%~25%)和气相聚合时间对薄膜微观结构及热电性能的影响.研究结果表明,在氧化剂质量分数为20%,聚合时间为2.5 h时,可得到具有亚微米多孔结构与优异热电性能的PEDOT-Tos/PES复合薄膜,其电导率和Seebeck系数分别为(274±9) S/m和(13.8±0.5)μV/K,并且在一定的弯曲形变下表现出稳定的热电性能.该研究为制备优异柔性与热电性能的自支撑导电聚合物基薄膜提供了简便、可行的方案.  相似文献   

12.
以机械合金法合成PPP/ZnO (聚对苯撑/ZnO)纳米复合材料。PPP/ZnO经球磨后混合充分,聚对苯撑将ZnO块体完全分割。热电性能研究表明:添加聚对苯撑后,复合材料塞贝克系数大大降低,当聚对苯撑添加量的质量分数大于2%时,纳米复合材料的塞贝克系数均低于100μV · K?1,远低于传统合金类热电材料的相应值;而复合材料的电导率却随聚对苯撑添加量增加而增大,当聚对苯撑添加量的质量分数增加到4%时,750 K下的电导率上升至2500 S · m?1,较单一材料的电导率提高5倍以上。复合材料的热导率较纯ZnO(10 W · m ?1· K?1)大大降低,并随聚对苯撑添加量的增加而降低,当其添加量的质量分数为4%时,其复合材料在800 K时的热导率可降至1.6W·m?1·K?1。  相似文献   

13.
采用高温熔炼、高能球磨、冷压成型和气氛保护烧结工艺制备了块体热电材料,研究了熔体冷却速度对In_(0.01)Bi_(1.99)Te_(2.7)Se_(0.3)热电材料显微组织与热电性能的影响.利用XRD、EDS、SEM、DSC、热电测试仪、激光热导仪等测试了热电材料的物相、晶粒大小、元素组成和含量、表面形貌和塞贝克系数、电导率、热导率.结果表明:冷却速度对物相无影响,热电材料物相均为Bi_2Te_(2.7)Se_(0.3)相;冷却速度越快,成分越均匀、晶粒越细;液氮冷却的热电材料室温(300K)塞贝克系数增大到173μV/K、电导率为4.85×104S/m、热导率减小至0.701 W·m-1·K-1,热电优值达到0.62.  相似文献   

14.
采用聚合物造粒的方法,将聚乙烯醇溶液(PVA)和n型Bi2Se0.3Te2.7粉末按一定的配比混合,研究聚合物造粒对Bi2Se0.3Te2.7热电性能的影响。结果表明:造粒后粉体样品的粒径尺寸明显增加,流动性显著提升,其中以PVA与Bi2Se0.3Te2.7质量比1 :10造粒样品的流动性最好;造粒前后,块体样品的电导率、Seebeck系数以及热导率变化范围约在10%以内,总体ZT值变化不大,并且以PVA与Bi2Se0.3Te2.7质量比1 :10造粒样品和Bi2Se0.3Te2.7样品的ZT值在测试范围内几乎相同,均在475 K时达到最大值,约为0.56左右。  相似文献   

15.
以单壁碳纳米管(SWCNTs)为基体,掺入适量的植酸、苯胺与过硫酸铵,通过原位溶液聚合制得植酸掺杂聚苯胺/酸化单壁碳纳米管(PA/PANI/SWCNTs)热电复合薄膜。通过扫描电子显微镜、傅里叶变换红外光谱、拉曼光谱、X-射线衍射、X-光电子能谱、热重分析和热电仪器表征了复合薄膜的结构与性能。结果表明:植酸掺杂聚苯胺为珊瑚状形貌,掺入适量的植酸掺杂聚苯胺和适当的提升温度有助于提升单壁碳纳米管基热电薄膜的功率因子。当植酸掺杂聚苯胺与酸化单壁碳纳米管的质量比为2∶10,温度为125℃时,PA/PANI/SWCNTs的功率因子最高,为(95.9±1.5)μW/(m·K2),对应的Seebeck系数和电导率分别为(44.5±0.5)μV/K和(48.4±0.3)kS/m。  相似文献   

16.
为提高磷灰石型电解质(LSO)的电导率,以氧化镧(La2O3)、氧化锌(ZnO)和氧化钐(Sm2O3)为主要原料通过尿素-硝酸盐燃烧法在600 ℃的温度下合成了掺杂钐和锌的La9.33SmxSi5ZnO(25+1.5x)固体电解质粉末。采用X射线衍射、扫描电子显微镜、变温介电测量系统对样品进行物质结构、表面形貌、电导率的表征。研究了不同温度和不同掺杂浓度下La9.33SmxSi5ZnO(25+1.5x)的电导率。结果表明,Sm和Zn成功掺杂进入LSO的晶格中,样品具有典型的P63/m磷灰石结构且纯度高,LSO的形貌未改变。当Sm掺杂浓度为0.6,Zn掺杂浓度为1时,在温度为650 ℃下La9.33SmxSi5ZnO(25+1.5x)的电导率达到1.50×10-3 S/cm;确定了最佳烧结温度为1 400 ℃。La9.33SmxSi5ZnO(25+1.5x)的电导率在同一温度下随着掺杂量的增加先提高后降低,掺杂样品的晶胞参数相比于未掺杂样品的晶胞参数增大,活化能随着掺杂量的增大先降低后升高。此外La9.33SmxSi5ZnO(25+1.5x)的电导率在同一掺杂量下,随着温度的升高而提高。  相似文献   

17.
采用高温熔融法结合固相反应法合成了一系列单相的SmyFexCo4-x-Sb12化合物,并探索了Sm填充分数对其热电性能的影响规律。结果表明,随着Sm填充分数的增加,载流子浓度及电导率降低;塞贝克系数随温度的升高和Sm填充分数的增加而增大;晶格热导率随Sm填充分数的增加先减小然后再增加,在某一填充分数时达到最小值。Sm0.19Fe1.47Co2.53Sb12化合物显示最大热电性能指数,在750K时其最大无量纲热电性能指数ZTmax值达0.55。  相似文献   

18.
以实验室合成的本征态和两种掺杂改性的聚苯胺为待测试样, 采用恒电位仪的两电极测量体系, 利用单扫伏安法测定了聚苯胺的电导率。在测定时, 电极与试片间的压力影响接触电阻, 当压力为0 .5 MPa 时该电阻可忽略。实验测得3 种聚苯胺的电导率分别为5 .92 ×10 -5 、1 .52×10-2 、2 .68×10-1 S/cm , 说明掺杂改性聚苯胺的电导率有很大的提高。单扫伏安法方法不仅简便, 而且适合于测定半导体的电导率  相似文献   

19.
采用熔融-缓冷工艺制备了Ga掺杂n型三元GaxPb1-xTe(x=0.01-0.05)化合物.研究了Ga含量对化合物热电传输性能的影响规律.结果表明,随着Ga含量的增加,样品载流子浓度增加,载流子迁移率逐渐减小,载流子散射机制从声学波散射逐渐变为声学波和电离杂质共同散射;随着Ga含量的增加,化合物的电导率大幅度增加,Seebeck系数逐渐降低.在所有组成化合物中,当x=0.02时, 化合物功率因子最大,在375 K和775 K时分别为2.88×10-3 W/mK2和1.73×10-3 W/mK2.  相似文献   

20.
采用高温固相法在弱还原气氛下制备了系列荧光粉材料Sr1-3(x+y)/2Al2Si2O8:xCe3+,yTb3+,并通过X射线衍射(XRD)、荧光光谱和荧光强度比(FIR)测温法分析了荧光粉样品的晶体结构、发光性能及其温度传感特性。XRD分析结果表明掺杂离子Ce3+和Tb3+均占据Sr2+格位,并且掺杂少量的稀土离子不会改变基质的晶体结构。荧光光谱分析结果表明在近紫外光激发下,该双掺杂荧光粉的发射光谱显示出Ce3+和Tb3+离子的特征发射峰,最佳掺杂浓度的荧光粉化学式为Sr0.865Al2Si2O8:0.05Ce3+,0.04Tb3+。此外,在不同波长的监测下,测得的激发光谱形状十分相似,表明在该荧光粉中存在着Ce3+→Tb3+能量传递过程。FIR测温法计算结果表明该荧光粉的相对灵敏度随温度的升高而升高,在520 K时有最大值为0.022 4 K-1。研究结果表明该荧光粉具备的优异光学性能和温度传感性能使其成为一种具有应用前景的测温材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号