首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow hybrid heterostructures are regarded to be promising materials as bifunctional electrocatalysts for highly efficient water electrolysis due to their intriguing morphological features and remarkable electrochemical properties. Herein, with FeNi-PBA as both a precursor and morphological template, we demonstrate the rational construct of cost-effective (Fe,Ni)S2@MoS2/NiS2 hollow hybrid heterostructures as bifunctional electrocatalysts for alkaline overall water splitting. Microstructural analysis shows that the hybrid is a kind of hierarchical heterostructure composed of MoS2/NiS2 nanosheets/nanoparticles in situ grown on hollow (Fe,Ni)S2 nanocubes with abundant heterointerfaces, which effectively maximizes the electrochemical active sites to the accessible electrolyte ions, leading to the promoted charge transfer. As expected, the hybrid shows remarkable alkaline electrocatalytic performance, such as hydrogen evolution overpotential of 176 mV and oxygen evolution overpotential of 342 mV at 50 mA cm?2, as well a cell voltage of 1.65 V at 20 mA cm?2. Moreover, the stability and durability are greatly enhanced under harsh electrochemical conditions. This study opens a new venue for developing earth-abundant bifunctional electrocatalysts with hollow hybrid heterostructures for alkaline water electrolysis in the future.  相似文献   

2.
Fabrication of an electrocatalyst with remarkable electrocatalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for the production of hydrogen energy. In this study, Ni–Co–W alloy urchin-like nanostructures were fabricated by binder-free and cost-effective electrochemical deposition method at different applied current densities and HER and OER electrocatalytic activity was studied. The results of this study showed that the microstructure and morphology are strongly influenced by the electrochemical deposition parameters and the best electrocatalytic properties are obtained at the electrode created at the 20 mA.cm−2applied current density. The optimum electrode requires −66 mV and 264 mV, respectively, for OER and HER reactions for delivering the 10 mA cm−2 current density. The optimum electrode also showed negligible potential change after 10 h electrolysis at 100 mA cm−2, which means remarkable electrocatalytic stability. In addition, when this electrode used as a for full water splitting, it required only 1.58 V to create a current density of 10 mA cm−2. Such excellent electrocatalytic activity and stability can be related to the high electrochemical active surface area, being binder-free, high intrinsic electrocatalytic activity and hydrophilicity. This study introduces a simple and cost-effective method for fabricating of effective electrodes with high electrocatalytic activity.  相似文献   

3.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   

4.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

5.
Exploring cost-effective, high-efficiency and stable electrocatalysts for overall water splitting is greatly desirable and challenging for sustainable energy. Herein, a novel designed Ni activated molybdenum carbide nanoparticle loaded on stereotaxically-constructed graphene (SCG) using two steps facile strategy (hydrothermal and carbonization) as a bifunctional electrocatalyst for overall water splitting. The optimized Ni/Mo2C(1:20)-SCG composites exhibit excellent performance with a low overpotential of 150 mV and 330 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively to obtain a current density of 10 mA cm?2 in 1.0 M KOH solution. In addition, when the optimized Ni/Mo2C(1:20)-SCG composite is used as a bifunctional electrode for overall water splitting, the electrochemical cell required a low cell voltage of 1.68 V at a current density of 10 mA cm?2 and long-term stability of 24 h. More significantly, the synergetic effects between Ni-activated Mo2C nanoparticles and SCG are regarded as a significant contributor to accelerate charge transfer and promote electrocatalytic performance in hybrid electrocatalysts. Our works introduce a novel approach to design advanced bifunctional electrodes for overall water splitting.  相似文献   

6.
Transition metal phosphides have been known as promising electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER and OER) due to their high catalytic activity. In this work, the FeCoP nanoparticles decorated on N-doped electrospun carbon nanofibers (FeCoP@NCNFs) was successfully synthesized through depositing Fe, Co-based Prussian blue analogue Co3[Fe(CN)6]2·10H2O (FeCo-PBA) onto the electrospun PVP/PAN nanofibers via layer-by-layer approach, followed by carbonization and phosphorization treatments. Benefiting from the high electrical conductivity, abundant catalytic active sites and the synergistic effect between FeCoP nanoparticles and N-doped carbon nanofibers network, the obtained FeCoP@NCNFs displays good bifunctional electrocatalytic activity. In 1 M KOH, the FeCoP@NCNFs achieves 10 mA cm?2 at an overpotential of 290, 226 mV for OER and HER, respectively. Moreover, it demands overpotential of 196 mV to achieve 10 mA cm?2 for HER in 0.5 M H2SO4. The FeCoP@NCNFs is used as both anode and cathode for overall water splitting, it requires a low voltage of 1.65 V to achieve a current density of 10 mA cm?2 and maintains outstanding stability over 10 h. Herein, a strategy for preparing bifunctional electrocatalysts of compositing transition metal phosphides with carbon nanofibers is proposed, and the application of metal-organic framework in electrocatalytic field is further extended.  相似文献   

7.
Hybrid electrodes have recently been investigated as attractive alternatives to noble-metal-based electrocatalysts for hydrogen production by water splitting. Herein, we propose an electrode composed of an oxidized carbon cloth with an electrodeposited bimetallic Co/Fe-based film. By optimizing the electrodeposition conditions and applying electrochemically activated carbon cloth as a substrate, one can prepare a free-standing noble-metal-free electrocatalytic electrode with high bifunctional electrocatalytic activity in hydrogen and oxygen evolution from alkaline solution. The developed Fe0.25Co0.75 electrode requires overpotentials of 245 mV for HER and 360 mV for OER at high current densities of −100 and 100 mA cm−2, respectively. Furthermore, its overall synthesis time from commercially available raw materials is only approximately 20 min. The electrode material was used as both a cathode and an anode in the model electrolyzer, which can deliver 10 mA cm−2 of current density at 1.66 V without loss of activity during 100 h of performance.  相似文献   

8.
Flowers-like 3D hierarchical ternary NiCoMo-layered double hydroxide (NiCoMo-LDH) spheres have been fabricated in substrate-free route via a one-pot hydrothermal method and utilized as efficient electrocatalysts for the OER and HER. The well-structured 3D hierarchical flowers were composed of numerous two-dimensional nanosheets, which inherently possess considerable electrochemical active sites, thereby enhancing catalytic activity. NiMo and CoMo binary LDHs, with similar morphology, were also prepared to illustrate the efficiency of the ternary LDH. The results indicate higher electrocatalytic activity for the ternary LDH as compared to binary LDHs under alkaline conditions. The NiCoMo-LDH required an overpotential as low as 202 and 93 mV to deliver a constant anodic and cathodic current density of 10 mA cm?2 for the OER and HER, respectively. Furthermore, the NiCoMo-LDH exhibited remarkable HER activity, affording a low overpotential of 198 mV at a current density of ?100 mA cm?2. Moreover, it could offer a stable current density of 10 mA cm?2 for overall water splitting at 1.62 V in 1 M KOH with long-term stability for 20 h. The double-layer capacitance (Cdl) value indicated that the NiCoMo-LDH significantly influenced interface conductivity and the electrochemical active surface area. The ternary NiCoMo-LDH electrode yielded low Tafel slope values of 54 and 51 mVdec?1 for the OER and HER. Owing to the efficient incorporation of Ni, Co, and Mo in a layered structure, synergetic effect, and high electrochemical surface area, the NiCoMo-LDH exhibited remarkable electrocatalytic activity. Such eco-friendly ternary LDHs can be used in rechargeable metal–air batteries for industrial applications.  相似文献   

9.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

10.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   

11.
Low-cost yet high-efficiency oxygen evolution reaction (OER) catalysts have attracted ardent attention to speed up the development of water electrolysis. Recent researches have shown that layered double hydroxides (LDH) are promising candidates towards OER, but further improvement is still highly demanded for its large-scale practical application in water splitting. Herein, we report a 3D P-doped MoO3/FeCo LDH/NF (P–MoO3/FeCo LDH/NF) ultrathin nanosheet heterostructure electrocatalyst with an extremely low overpotentials of 225 mV for delivering a current density of 10 mA cm?2 for OER and a great durability for at least 80 h by a simple one-step hydrothermal method. Extraordinarily, the P–MoO3/FeCo LDH catalyst achieves a high current density of 300 mA cm?2 and even 350 mA cm?2 at an extremely low overpotential of 297 mV and 302 mV, respectively, which is crucial for the water electrolysis industry. The remarkable performance may be attributed to that the heterostructure between P–MoO3 and FeCo LDH not only optimizes electronic structure, thus inducing electron transfer from P–MoO3 to FeCo LDH and then realizing fast electron transfer rates, but also produces more catalytic active sites. Moreover, the synergetic effect between MoO3 and FeCo LDH also plays an essential role for enhancing the catalytic performances. This work explores the effect of phosphomolybdic acid on the structure, composition and performances of FeCo LDH catalysts, and also provides a simple and cost-effective way to prepare high-efficiency and low-cost layered double hydroxide electrocatalysts for OER.  相似文献   

12.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   

13.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   

14.
Active site engineering for electrocatalysts is an essential strategy to improve their intrinsic electrocatalytic capability for practical applications and it is of great significance to develop a new excellent electrocatalyst for overall water splitting. Here, Co3O4/nickel foam (NF) and Co2(P4O12)/NF electrocatalysts with flower-shaped and sea urchin-shaped structures are synthesized by a simple hydrothermal process and followed by a post-treatment method. Among them, Co2(P4O12)/NF shows good catalytic activity for hydrogen evolution reaction (HER), and at the current density of 10 mA cm?2, the overpotential is only 113 mV Co3O4/NF exhibits good catalytic activity for oxygen evolution reaction (OER), and the overpotential is 327 mV at 20 mA cm?2. An alkaline electrolyzer with Co3O4/NF and Co2(P4O12)/NF catalysts respectively as anode and cathode displays a current density of 10 mA cm?2 at a cell voltage of 1.59 V. This work provides a simple way to prepare high efficient, low cost and rich in content promising electrocatalysts for overall water splitting.  相似文献   

15.
Designing non-precious and long-lasting electrocatalysts with enhanced catalytic properties for hydrogen evolution reaction (HER) is a fundamental approach to address the needs for hydrogen industry and overcome the current challenges in sustainable energy generation. Herein, we present ternary NiCoP nanostructures synthesized through a direct and controlled electrochemical deposition at room temperature as highly efficient electrocatalysts for HER. Different Ni/Co ratios in the alloy were investigated resulting in different nanoarchitectured morphologies, chemical compositions and HER performances, in turn. The NiCoP–I alloy exhibited a nanoparticulated morphology comprising well-defined nanoparticles of ~20–30 nm which evolved to nanoparticulated caps at prolonged electrodeposition times presenting a large electrochemical surface area of 526 cm2. The NiCoP–I electrocatalyst demonstrated a small Tafel slope of 49 mV dec?1 and an ultra-low overpotential of 68 mV vs. RHE at ?10 mA cm?2 in alkaline solution which well rivals to that of Pt foil and outmatches its binary alloy counterparts.  相似文献   

16.
A kind of composite electrocatalysts with the structure of MoO3 nanosheets coated by ZIF67 nanocrystals and grown on the nickel foam substrate (ZIF67@MoO3 NSs@NF) is prepared and mainly used as the electrode for oxygen evolution reaction (OER) and overall water splitting. The excellent electrocatalytic activity of ZIF67@MoO3 NSs@NF are demonstrated. It can use the overpotential (?) of 178 mV and 386 mV respectively to drive 10 mA cm?2 and 50 mA cm?2. It is also observed that the ZIF67@MoO3 NSs@NF electrode has the highest initial current density (45.7 mA cm?2) at 1.618 V and can maintain more than 90% of the initial current density after 20,000 s. The ZIF67@MoO3 NSs@NF electrode also shows the small HER overpotential of 135 mV at 10 mA cm?2. Furthermore, the voltage of ZIF67@MoO3 NSs@NF as a bifunctional overall water splitting catalysts is 1.58 V at 10 mA cm?2, which is superior to another noble metal electric catalyst combination RuO2/NF(+)//Pt–C/NF(?). And the ZIF67@MoO3 NSs@NF(+)//ZIF67@MoO3 NSs@NF(?) combination can maintain more than 90% of the initial current density after 65,000 s at 1.58 V. The main reason is the composite interface of MoO3 NSs and ZIF67 phases with Co–O bonds, C–O–Mo bonds and oxygen vacancies defects facilitates the increase of the active sites and efficient electron transfer rate.  相似文献   

17.
Development of low-cost, high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is challenging, even though it is critical for the overall electrochemical splitting. Herein, we report a NiMoP@NiFe-LDH heterostructure electrode supported on nickel foam. The study shows that the electrocatalytic activity for the OER can be improved by coupling NiMoP and NiFe-LDH. The resulting NiMoP@NiFe-LDH heterostructure exhibited remarkable catalytic performance with an ultralow overpotential of only 299 mV at a current density of 150 mA cm?2 and a Tafel slope of 23.3 mV dec?1 in 1.0 M KOH solution. Electron transfer from NiFe-LDH to NiMoP at the nanointerface reduces the energy barrier of the catalytic process, thus improving the OER activity performance. Thus, high-efficiency electrocatalysts can be utilised by constructing heterojunctions to regulate the electronic structure at the interface of the electrocatalysts.  相似文献   

18.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

19.
The development of cost-effective, highly efficient and stable electrocatalysts for alkaline water electrolysis at a large current density has attracted considerable attention. Herein, we reported a one-dimensional (1D) porous Mo2C/Mo2N heterostructured electrocatalyst on carbon cloth as robust electrode for large current hydrogen evolution reaction (HER). The MoO3 nanobelt arrays and urea were used as the metal and non-metal sources to fabricate the electrocatalyst by one-step thermal reaction. Due to the in-situ formed abundant high active interfaces and porous structure, the Mo2C/Mo2N electrocatalyst shows enhanced HER activity and kinetics, as exemplified by low overpotentials of 54, 73, and 96 mV at a current density of 10 mA cm?2 and small Tafel slopes of 48, 59 and 60 mV dec?1 in alkaline, neutral and acid media, respectively. Furthermore, the optimal Mo2C/Mo2N catalyst only requires a low overpotential of 290 mV to reach a large current density of 500 mA cm?2 in alkaline media, which is superior to commercial Pt/C catalyst (368 mV) and better than those of recently reported Mo-based electrocatalysts. This work paves a facile strategy to construct highly efficient and low-cost electrocatalyst for water splitting, which could be extended to fabricate other heterostructured electrocatalyst for electrocatalysis and energy conversion.  相似文献   

20.
Developing efficient, stable and ideal urea oxide (UOR) electrocatalyst is key to produce green hydrogen in an economical way. Herein, Ru doped three dimensional (3D) porous Ni3N spheres, with tannic acid (TA) and urea as the carbon and nitrogen resources, is synthesized via hydrothermal and low-temperature treated process (Ru–Ni3N@NC). The porous nanostructure of Ni3N and the nickel foam provide abundant active sites and channel during catalytic process. Moreover, Ru doping and rich defects favor to boost the reaction kinetics by optimizing the adsorption/desorption or dissociation of intermediates and reactants. The above advantages enable Ru–Ni3N@NC to have good bifunctional catalytic performance in alkaline media. Only 43 and 270 mV overpotentials are required for hydrogen evolution (HER) and oxygen evolution (OER) reactions to drive a current of 10 mA cm?2. Moreover, it also showed good electrocatalytic performance in neutral and alkaline seawater electrolytes for HER with 134 mV to drive 10 mA cm?2 and 83 mV to drive 100 mA cm?2, respectively. Remarkably, the as-designed Ru–Ni3N@NC also owns extraordinary catalytic activity and stability toward UOR. Moreover, using the synthesized Ru–Ni3N@NC nanomaterial as the anode and cathode of urea assisted water decomposition, a small potential of 1.41 V was required to reach 10 mA cm?2. It can also be powered by sustainable energy sources such as wind, solar and thermal energies. In order to make better use of the earth's abundant resources, this work provides a new way to develop multi-functional green electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号