首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study demonstrates a high-performance visible-light-driven photocatalyst for water splitting H2 production. CdS nanorods (30 nm in diameters) with shorter radial transfer paths and fewer defects were prepared by a solvothermal method. To mitigate the recombination of electrons and holes, MoS2 nanosheets with rich active sites were modified on the surface of CdS nanorods by a room-temperature sonication treatment. The photocatalytic water splitting tests show that the MoS2/CdS nanocomposites exhibit excellent H2 evolution rates. The highest H2 evolution rates (63.71 and 71.24 mmol g?1h?1 in visible light and simulated solar light irradiation) was found at the 6% MoS2/CdS nanocomposites, which was 14.61 times and 13.39 times higher than those of the corresponding pristine CdS nanorods in visible light and simulate solar light irradiation, respectively. The apparent quantum efficiency (AQE) of the 6% MoS2/CdS nanocomposites at 420 nm was calculated to be 33.62%. The electrochemistry tests reveal that the enhanced photocatalytic activity is a result of extra photogenerated charge carries, greatly enhanced charge separation and transfer ability of the MoS2/CdS composites. This study may give new insights for the rational design and facile synthesis of high-performance and cost-effective bimetallic sulfide photocatalysts for solar-hydrogen energy conversion.  相似文献   

2.
3.
The photocatalytic water splitting for generation of clean hydrogen energy has received increasingly attention in the field of photocatalysis. In this study, the Ta2O5/g-C3N4 heterojunctions were successfully fabricated via a simple one-step heating strategy. The photocatalytic activity of as-prepared photocatalysts were evaluated by water splitting for hydrogen evolution under visible-light irradiation (λ > 420 nm). Compared to the pristine g-C3N4, the obtained heterojunctions exhibited remarkably improved hydrogen production performance. It was found that the 7.5%TO/CN heterojunction presented the best photocatalytic hydrogen evolution efficiency, which was about 4.2 times higher than that of pure g-C3N4. Moreover, the 7.5%TO/CN sample also displayed excellent photochemical stability even after 20 h photocatalytic test. By further experimental study, the enhanced photocatalytic activity is mainly attributed to the significantly improve the interfacial charge separation in the heterojunction between g-C3N4 and Ta2O5. This work provides a facile approach to design g-C3N4-based photocatalyst and develops an efficient visible-light-driven heterojunction for application in solar energy conversion.  相似文献   

4.
The development and design of efficient photoelectric catalysts is of great significance for environmental friendliness. This paper is devoted to finding a new two-dimensional van der Waals heterojunction to realize hydrogen production from water splitting. Based on first-principles calculations, a direct type-Z C3N/WS2 heterojunction was successfully designed by combining highly active two-dimensional transition metal dichalcogenides (TMDs) with C3N similar in structure to graphene. The staggered band structure of the direct Z-scheme and high carrier mobility facilitates the efficient separation of photogenerated electron and hole pairs. More importantly, the C3N/WS2 direct Z-type heterojunction can perfectly realize total water splitting from pH = 0 to pH = 7. What's more, the Gibbs free energy and overpotential demonstrate the excellent hydrogen evolution capability and the oxygen evolution capacity of the material. In summary, these studies provide new ideas for designing high-performance photoelectric catalysts for visible-light water splitting.  相似文献   

5.
We report the synthesis of TiO2 hierarchical spheres (THS) with large specific surface area via a facile one-pot solvothermal method. The as-prepared THS are self-assembled by ultrathin TiO2 nanosheets with thickness of several nanometers and they show a uniform spherical morphology with an average size of 500–700 nm. However, the as-prepared light yellow THS exhibit inferior photocatalytic activity for hydrogen evolution from water splitting due to the poor crystallization of TiO2 and the existence of oxygen vacancies. Significantly, a subsequent thermal treatment improves the crystallinity of THS, reduces the oxygen vacancies, and thereby enhances the photocatalytic performance. It demonstrates that the sample annealed at 550 °C (THS550) exhibits the highest photocatalytic activity, about 5 times higher than that of commercial TiO2 nanoparticles (CTiO2). Moreover, the THS550 sample loaded with 1 wt% Pt exhibits an hydrogen evolution rate as high as 17.9 mmol h?1g?1, and the corresponding apparent quantum efficiency has been determined to be 28.46% under 350 nm light irradiation.  相似文献   

6.
MXene, an emerging family of two-dimensional (2-D) material, has shown outstanding electronic properties and promise for the applications on energy storage and conversion. In this paper, Ti3C2 MXene nanoparticles were synthesized by a facile solvent exfoliation method and used to construct metal oxide/Ti3C2 heterostructures. When these heterostructures were used as photoanodes for photoelectrochemical water splitting, significantly improved photoactivity and stability were achieved. Compared to pristine TiO2, 6-fold enhanced applied bias photon-to-current efficiency (ABPE) was achieved for TiO2/Ti3C2 heterostructures. According to the electron spin resonance, electrical impedance spectroscopic and Mott-Schottky measurements, the enhanced photoelectrochemical performance was ascribed to the presence of Ti3C2 as oxygen evolution cocatalysts and the strong interfacial interactions between metal oxide and Ti3C2. Therefore, our research provides a new way to design MXene-based heterostructures for solar energy conversion applications.  相似文献   

7.
The high efficiency of SrTiO3 in the reaction of heterogeneous photocatalysis needs a suitable architecture that maximises photon absorption and minimises electron loss during excitation state. In order to further enhance the migration of charge carriers during excitation state, considerable effort has to be exerted to further develop the heterogeneous photocatalysis of this SrTiO3 under UV, visible, and solar illumination. Currently, unique and interesting features of binary photocatalyst system have gained more attention by researchers and it became a favourite research topic among various groups of scientists around the world. It was noticed that the binary photocatalyst system properties primarily depends on the nature of the surface properties, surface morphologies, as well as the role of optimum dopants amount incorporated into the SrTiO3. Thus, this article presents a critical review of recent achievements in the photocatalytic activity of the SrTiO3 for water splitting H2 generation technology.  相似文献   

8.
One-dimensional CdS nanorods have garnered interest because of their highly visible light response, narrow bandgap, and negative potential at the conduction band edge, which are suitable for proton reduction. However, their poor charge separation and surface photocorrosion remain unresolved. In this study, CdS was synthesized with a 3D dendrite-like morphology to reduce its surface instability and junctioned with inexpensive FeS2 particles to extend the absorption region toward visible light and improve its photoactivity. The photocurrent density was increased 8.3 times, and the photoluminescence reduced by half in petal-shaped CdS/15% FeS2 compared with pure CdS. The petal-shaped CdS/15% FeS2 heterojunction catalyst exhibited significantly enhanced photostability and photocatalytic activity; when 10% lactic acid was used as a hole scavenger, the hydrogen generation rate was 22.91 mL g?1 for 10 h in pure CdS particles and 107.56 mL g?1 in the petal-shaped CdS/15% FeS2 particles. Moreover, the amount of hydrogen generated was maintained until 8th recycling experiments. The Cd and S ions eluted via photocorrosion were not detected after the reaction was complete. This was attributed to the petal-shaped CdS/FeS2 heterojunction system which protected the unstable CdS surface owing to its controlled morphology. The FeS2 junction improved visible light absorption facilitating the separation of photogenerated charges.  相似文献   

9.
Cubic SrTiO3 powders were synthesized by three methods: the polymerized complex (PC) method, the solid state reaction, and the milling assistant method. The samples obtained were characterized by X-ray diffraction (XRD), UV–vis spectroscopy (UV–vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The mean diameters of the as-synthesized SrTiO3 particles were 30 nm by the polymerized complex method, 140 nm by the solid state reaction, and 30 nm by the milling assistant method. The photocatalytic activity of hydrogen evolution from water splitting over SrTiO3 powders by the polymerized complex method is higher than that by the solid state reaction and the milling assistant method. Particle size, uniformity of components, and particle aggregation extent affect the photocatalytic activity of SrTiO3 for hydrogen evolution. The best rate of photocatalytic hydrogen evolution over SrTiO3 by the polymerized complex method under UV illumination is as high as 3.2 mmol h−1 g−1.  相似文献   

10.
The energy crisis caused by the decrease of fossil fuels and the environmental pollution problems related to combustion can be resolved through the green technology of photocatalytic water splitting to produce hydrogen. A novel g-C6N6/SiP-GaS van der Waals heterojunction is designed and its structural, optoelectronic and photocatalytic properties are systematically investigated by using the first-principles method. The results indicate that the g-C6N6/SiP-GaS heterojunction is a type-Ⅱ heterojunction and the band edge straddles the redox potential of water splitting. The g-C6N6/SiP-GaS heterojunction exhibits good optical absorption in the visible-light range. It is worth noting that the optoelectronic properties and thermodynamic feasibility of the heterojunction can be modulated by the biaxial strain. Interestingly, all the optical absorption, OER and HER can be effectively improved under the strain of ?4%. The work supplies a strategy for the design and making of novel heterojunction for a highly effective photocatalyst in water splitting.  相似文献   

11.
With the shortage of global fossil energy and the increasing crisis of environmental deterioration, hydrogen energy has become an environmentally benign alternative as a clean energy source. In most studies on photocatalytic hydrogen production, novel photocatalytic material has played an important role to enhance the hydrogen production rate. In this study, the optimal conditions for the synthesis of MoS2 were established through series of characterizations with 190 °C calcination temperature and 1 wt% PEG surfactant addition. The best conditions for synthesizing MOF include copper nitrate as the copper precursor, 30% ultrasonic amplitude, and 240 °C calcination temperature. After adding 1 wt% MOF in MOS2, a flower-like structure with small particle size, uniform distribution, regularity, and large surface pores, has been formed, where its unit is modified with many rough, porous, and high specific surface area octahedral structures. In addition, 1MOF/MOS2 has the most negative conduction band edge (?0.135 V), the smallest charge transfer resistance (Rct = 1.78 Ω), the largest photo current (11.1 mA/cm2), the lowest PL spectral peak intensity, and excellent photocatalytic stability. The above morphological features and optical properties can significantly form more active sites, enhance the electron transfer rate, and inhibit the electron-hole recombination, thus making the MOF/MOS2 composite photocatalyst achieve the maximum hydrogen production capacity (626.3 μmol g?1 h?1).  相似文献   

12.
Noble metals and transition-metal oxides are needed as cocatalysts for facilitating H2 production over photocatalysts. Such cocatalysts are typically deposited as nanoparticles on the catalyst surface using impregnation or photodeposition methods, for which an activation treatment process is necessary. In this paper, we describe a facile method that utilizes a Pd-Cr2O3 nanocomposite cocatalyst at room temperature for the efficient production of H2 without the need of an activation treatment process. The Pd-Cr2O3/CdS photocatalyst shows a higher hydrogen evolution rate than that of a plain Pd metal loaded catalyst. Formation of a composite structure appears to be an important reason for the increased performance of Pd-Cr2O3/CdS photocatalyst.  相似文献   

13.
Defect engineering is effective to extend the light absorption range of TiO2. However, the oxygen vacancy defects in TiO2 may serve as recombination centers, hampering the separation and transfer of photo-generated charges. Here, we present a strategy of in-situ depositing noble-metal (M = Ag, Au or Pt) nanoparticles (NPs) on defective 3D TiO2 hierarchical spheres (THS) with large surface area through the redox reaction between metal ions in solution and the electrons trapped at oxygen vacancies in THS. The oxygen vacancies at the THS surface are consumed, resulting in direct contact between TiO2 and noble-metal NPs, while the other oxygen vacancies in the bulk are retained to promote visible light absorption. The noble-metal NPs with well-controlled size and distribution throughout the porous hierarchical structure not only facilitate the generation of electron-hole pairs in THS due to the effect of surface plasmon-induced resonance energy transfer (SPRET) from noble-metal NPs to TiO2, but also expediate the electron transfer from TiO2 to noble-metal NPs due to the Schottky junction at the TiO2/M interface. Therefore, THS-M shows improved photocatalytic performance in water splitting compared to THS. The optimum performance is achieved on THS-Pt (13.16 mmol h−1g−1) under full-spectrum (UV–Vis) irradiation but on THS-Au (1.49 mmol h−1g−1) under visible-light irradiation. The underlying mechanisms are proposed from the surface plasmon resonance of noble-metal NPs as well as the Schottky junction at the TiO2/M interface.  相似文献   

14.
Coating a protective agent or promoter on the surface of the photocatalyst is a proven good strategy to realize photocatalytic hydrogen production from pure water, but remains still a considerable challenge. Herein, a novel CdS@Mg(OH)2 core/shell composite nanorods photocatalyst was synthesized by coating Mg(OH)2 on CdS surface by hydrothermal and precipitation processes. The coated-Mg(OH)2 layer did not change the structure of CdS, and the photocatalytic overall water splitting performance of the CdS@Mg(OH)2 under visible light irradiation was improved obviously. After loading nano-Pt via the photodeposited method, the hydrogen production rate and stability of Pt/CdS@Mg(OH)2 were 3.3 and 2.4 times that of the Pt/CdS under the visible light irradiation, respectively. The surface Mg(OH)2 layer improved the hydrophilicity and stability of the core/shell composites and increased the amount of active sites, thus improving the photocatalytic properties. It is believed that Mg(OH)2 can be used as a new co-catalyst to enhance the performance of photocatalytic overall water splitting.  相似文献   

15.
Inspired by natural Z-scheme photosynthesis and black butterfly wing's antireflection morphology, we used the wings of butterfly Papilio nephelus Boisduva as templates to synthesize CdS/Au/TiO2 with butterfly wing architecture. This combination of artificial Z-scheme photosystem and butterfly wing's hierarchical architecture was expected to enhance the light harvesting and water splitting efficiency. The finite-difference time-domain (FDTD) simulation was applied to demonstrate the optical function of the architecture inherited from butterfly wing theoretically, UV–vis spectra and photocatalytic H2 evolution rates were further recorded to experimentally demonstrate the coupled effect of butterfly wing architecture and CdS/Au/TiO2 Z-scheme components. The FDTD simulation shows that the architecture of the wing scale TiO2 effectively reduced the UV light reflection by about 40%. Meanwhile, the wing scale architecture model exhibited lower UV reflection and transmission in water than those in air, which can be attributed to the stronger diffuse reflection in water. UV–vis spectra and photocatalytic H2 evolution experiments confirmed that the combination of the wing scale architecture and CdS/Au/TiO2 Z-scheme components contributed to the enhancement of the light harvesting ability and improved the water-splitting efficiency by 200% compared to the plate architecture TiO2. Inspired by Nature, we present a promising way for constructing efficient photocatalysts for hydrogen evolution.  相似文献   

16.
17.
A series of Au/TiO2 photocatalysts was synthesized via the light assistance through the photo-deposition for H2 production by photocatalytic water splitting using ethanol as the hole scavenger. Effect of solution pH in the range of 3.2–10.0 on the morphology and photocatalytic activity for H2 production of the obtained Au/TiO2 photocatalysts was explored. It was found that all Au/TiO2 photocatalysts prepared in different solution pH exhibited comparable anatase fraction (~0.84–0.85) and crystallite size of TiO2 (21–22 nm), but showed different quantity of deposited Au nanoparticles (NPs) and other properties, particularly the particle size of the Au NPs. Among all prepared Au/TiO2 photocatalysts, the Au/TiO2 (10.0) photocatalyst exhibited the highest photocatalytic activity for H2 production, owning to its high metallic state and small size of Au NPs. Via this photocatalyst, the maximum H2 production of 296 μmol (~360 μmol/g?h) was gained at 240 min using the 30 vol% ethanol as the hole scavenger at the photocatalyst loading of 1.33 g/L under the UV light intensity of 0.24 mW/cm2 with the quantum efficiency of 61.2% at 254 nm. The loss of the photocatalytic activity of around 20% was observed after the 5th use.  相似文献   

18.
A d10 photocatalyst, GaFeO3 having a band gap of ∼2.7 eV, exhibits significant activity for the overall splitting of water under visible light (>395 nm) irradiation, in the absence of sacrificial reagent or a noble metal co-catalyst. The doping of an anion led to considerable enhancement in activity, the S-doped catalysts displaying better activity compared to the samples containing nitrogen. Even though the H2/O2 yields were affected by preparation-dependent grain morphology, no direct relationship was observed between the photoactivity of a sample and its specific surface area. The techniques of HRTEM, SEM, XPS, Laser Raman, UV–visible and photoluminescence spectroscopy have enabled to demonstrate that, besides the grain morphology, certain lattice imperfections and microstructure may also play a crucial role in water splitting activity of a photocatalyst. The factors responsible for catalyst deactivation are examined.  相似文献   

19.
Cadmium sulphide nanoparticles (6–12 nm) are prepared by a precipitation process using different zeolite matrices as templates. The nanoparticles were characterized by UV-Vis, XRD, SEM, TEM and sorptometric techniques. XRD study shows the presence of hexagonal and cubic phases for the nanoparticles whereas in case of the bulk samples only the hexagonal phase is observed. These nanomaterials have been used as catalysts for the photocatalytic decomposition of water. The nanoparticles show a higher hydrogen evolution rate compared to the bulk samples which correlates well with the particle size and surface area. Noble metal (Pt, Pd, Rh, Ru)-loaded samples were subsequently prepared and tested for hydrogen evolution reaction. The presence of Pt metal is found to enhance the hydrogen production rate whereas the hydrogen production rate is retarded in the presence of Ru metal. This has been explained on the basis of metal hydrogen bond, redox potential and work function of the noble metal.  相似文献   

20.
In this paper, novel TiO2/CeO2 core/shell heterojunction nanorod (NR) arrays were synthesized as photoanode for photoelectrochemical (PEC) water splitting via a simple and facial two-step hydrothermal approach. This synthesis route can obtain different amount of CeO2 nanoparticles by controlling the hydrothermal time and eventually achieve uniform TiO2/CeO2 core/shell nanostructures. The uniform TiO2/CeO2 core/shell heterojunction nanoarrays exhibit a markedly enhanced photocurrent density of 5.30 mA·cm?2 compared to that of pristine TiO2 NR 1.79 mA·cm?2 at 1.23 V vs. RHE in 1 M KOH solution. The superior PEC performance of the TiO2/CeO2 core/shell heterojunction is primarily due to much enhanced visible light absorption and appropriate gradient energy gap structure. This work not only offers the synthesis route for the novel TiO2/CeO2 core/shell heterojunction, but also suggests that this new core/shell heterojunction has a great potential application for efficient PEC water splitting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号