首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, for the first time, a metal-free catalyst was synthesized by ethylenediamine tetra-acetic acid (EDTA) modification of the carbon nitride (g-C3N4) sample and protonation of the obtained sample. The catalyst was used for the production of H2 from the methanolysis of sodium borohydride (NaBH4). The EDTA modification and protonation of the g-C3N4 sample was confirmed by XRD, FTIR, SEM-EDX, and TEM analyses. During the hydrogen generation, NaBH4 concentration effect, catalyst amount effect, temperature effect and catalyst reusability were investigated. The HGR value obtained with 2.5% NaBH4 using 10 mg catalyst was 7571 mL min?1g?1. The activation energy (Ea) for the g–C3N4–EDTA-H catalyst was found to be 32.2 kJ mol?1 The reusability of the g–C3N4–EDTA-H catalyst shows a catalytic performance of 72% even after its fifth use.  相似文献   

2.
Here, hybrid kaolin-g-C3N4 heterostructure particles were fabricated by calcination in the first step, followed by hydrothermal phosphoric acid activation in the second step, and phosphorus (P) and oxygen (O) doped kaolin-g-C3N4 metal-free catalyst was synthesized. This hybrid metal-free catalyst was used for the first time for the production of effective hydrogen (H2) from sodium borohydride (NaBH4) methanolysis. The hydrogen generation rate (HGR) value of 5500 ml min−1g−1 was obtained with the P and O doped kaolin-g-C3N4 catalyst. The activation energy (Ea) of 31.90 kJ mol−1 by P and O doped kaolin-g-C3N4 for the production of H2 was obtained. The kaolin-g-C3N4 and P and O doped kaolin-g-C3N4 metal-free catalysts were systematically characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). Based on the results obtained, the mechanism of P and O-doped kaolin-g-C3N4 catalyst on H2 production from NaBH4 methanolysis was also proposed.  相似文献   

3.
Here, the carbon nanodots were successfully synthesized from pomegranate peels (PPCD). This obtained PPCD was treated by a hydrothermal process with phosphoric acid for P doping (P doped PPCD) and used as a metal-free catalyst to obtain hydrogen(H2) from sodium borohydride (NaBH4) methanolysis for the first time. The characteristics of the samples obtained by ultraviolet, fluorescence, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Inductively coupled plasma mass spectrometry (ICP-MS) analyses were examined. NaBH4 concentration effect, temperature effect and catalyst reusability experiments were carried out. Using 10 mg of the catalyst with 2.5% NaBH4, an HGR value of 13000 mL min?1g?1 was obtained. The activation energy (Ea) for the P-doped PPCD catalyst was 30.96 kJ mol?1.  相似文献   

4.
In the present study, metal-free catalysts for efficient H2 generation from NaBH4 methanolysis was produced for the first time from apricot kernel shells with two-step activation. The first stage of the two-stage activation includes the production of activated carbon with the KOH agent (AKOH), and the second stage includes hydrothermally HNO3 activation with oxygen doping (O doped AKOH + N). The hydrogen production rate (HGR) and the activation energy (Ea) of the reaction with the obtained metal-free catalyst (10 mg) were determined as 14,444 ml min?1 g?1 and 7.86 kJ mol?1, respectively. The structural and physical-chemical properties of these catalysts were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), elemental CHNS analysis, FT-IR (Fourier transform infrared spectroscopy), and nitrogen adsorption analysis. Also, the reusability results of this metal-free catalyst for H2 production are promising.  相似文献   

5.
Here, the oxygen(O) and nitrogen(N) doped metal-free carbon synthesis including potassium hydroxide (KOH) activation of Spirulina Platensis microalgae, followed by nitric acid (HNO3) activation is reported for the first time. Oxygen and nitrogen-doped metal-free catalysts were investigated for efficient hydrogen (H2) production from methanolysis of sodium borohydride (NaBH4). Compared to the catalyst obtained with the KOH activation, the catalytic activity for O and N doped metal-free showed about a four-fold improvement. The catalysts were analysed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), nitrogen adsorption, elemental analysis and Fourier-transform infrared spectroscopy (FTIR). The effects of temperature, NaBH4 amounts, catalyst loading and reusability experiments on the catalytic performance of obtained metal-free catalysts by H2 release from NaBH4 methanolysis were performed. This study can provide a new alternative strategy to produce specific metal-free carbon catalysts doped heteroatom for environmentally friendly conversion to produce H2 efficiently.  相似文献   

6.
Micro algae based on Spirulina platensis is successfully used for the synthesis of S and N-doped metal-free carbon materials. The procedure consists of three stages; (i) Activated carbon production by KOH activation in CO2 atmosphere (S-AC), (ii) S atom doping to the obtained S-AC using sulphuric acid by hydrothermal activation (S-AC-S), (iii) N atom doping by hydrothermal activation to S-AC obtained using nitric acid (S-AC-S-N). The S and N doped metal-free catalysts are used for H2 release in NaBH4 methanolysis reaction (NaBH4-MR) for the first time. The metal-free carbon catalysts are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM-EDS), X-ray diffractometer spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption and elemental analysis (CHNS) methods. When the HGR values obtained for S-AC-S-N (26,000 mL min?1 g?1) and S-AC (2641 mL min?1 g?1) are compared, there is a 9.84-fold increase. Activation energy (Ea) value for S-AC-S-N was 10.59 kJ mol?1.  相似文献   

7.
Herein, the surface properties of graphitic carbon nitride (GCN) with sulphur(S), boron (B) and oxygen (O) dopants were improved. The heteroatom-doped metal-free GCN exhibited both rich surface functional groups and a carbon defect structure. These metal-free catalysts were used to obtain hydrogen (H2) from the sodium borohydride (SB) methanolysis for the first time. Compared to GCN, S, B, and O doped GCN catalyst obtained showed a 2.2-fold improvement in H2 production. HGR value obtained with B, O and S doped GCN (10 mg) via SB of 2.5% was 9166 ml min −1g−1. XPS, SEM-EDX, TEM, FTIR, and XRD analyses were used for the structural properties of catalysts. The activation energy (Ea) for B, O and S doped GCN was 28.89 kJ mol−1.  相似文献   

8.
Metal-free catalysts (SP–KOH–P) doped phosphorus and oxygen as a result of modification with H3PO4 to the surface of the activated carbon sample (SP–KOH) obtained by activation of KOH with Spirulina microalgae were used to obtain hydrogen (H2) from methanolysis of NaBH4. The characteristic structure of SP-KOH-P and SP-KOH metal-free catalysts were examined by XRD, TEM, elemental analysis, FTIR, and ICP-MS. The effects of the amount of catalyst, NaBH4 concentration, reusability, and temperature on H2 production rate from NaBH4 methanolysis reaction were investigated. The hydrogen production rate (HGR) obtained with 25 mg SP-KOH-P was found to be 19,500 mL min?1 g?1. The activation energy (Ea) value of SP-KOH-P metal-free catalyst sample was calculated as 38.79 kJ mol?1.  相似文献   

9.
In this study, nitrogen (N) doped metal-free catalysts were obtained as a result of nitric acid (HNO3) activation of carbon sample (C–KOH–N), which was obtained based on Chlorella Vulgaris microalgae by KOH activation (C–KOH). These catalysts have been effectively used to produce hydrogen (H2) from the sodium borohydride (NaBH4) methanolysis reaction. Compared to the C–KOH catalyst, the catalytic activity for C–KOH–N showed a seven-fold improvement. Hydrogen generation rate (HGR) values obtained for the NaBH4 methanolysis reaction for C–KOH and C–KOH–N metal-free catalysts were 3250 and 20,100 mL min?1 g?1. The catalysts were characterized using various analytical techniques such as XPS, XRD, SEM, FTIR, BET, and elemental analysis. This work can provide a new alternative strategy to produce specific heteroatom-doped metal-free carbon catalysts for environmentally friendly conversion to produce H2 efficiently.  相似文献   

10.
Graphite carbon nitride (g-C3N4) has caught far-ranging concern for its masses of advantages, for instance, the unique graphite-like two-dimensional lamellar structure, low cost, nontoxic, suitable bandgap of 2.7 eV and favorable stability. Whereas owing to the shortcomings of low solar absorptivity and fast recombination of photo-induced charge pairs, the overall quantum efficiency of photocatalysis for g-C3N4 is suboptimal, resulting in limited practicality of g-C3N4 (GCN). In our study, modified g-C3N4 materials (HCN) with ample carbon vacancies (CVs) were obtained through calcinating of g-C3N4 in H2 atmosphere. Higher specific surface area and more active sites of HCN were induced by roasting of g-C3N4 in H2. CVs that occurred in the N-(C3) bond lead to the reduction of electron density around N, thus narrowing the bandgap of HCN-3h and enlarging corresponding light response capability. Under the synergistic function of abundant pore construction and CVs on HCN, the photo-excited e?/h+ pairs can be memorably separated and transferred, which is favorable to photocatalytic efficiency. Among HCN, the HCN-3h sample has the highest H2 generation rate of 4297.9 μmol h?1 g?1, which achieves 2.3-fold higher than that of GCN (1291.7 μmol h?1 g?1). This paper brings forward a meaningful method of boosting the photocatalytic performance of photocatalysts by constructing abundant CVs.  相似文献   

11.
Herein, highly efficient and cost effective solar photocatalytic water splitting for hydrogen (H2) generation was achieved by modified g-C3N4. Visible light absorption of g-C3N4 was enhanced by decorating g-C3N4 matrix with silver nanoparticles (Ag). Moreover, incorporation of carbon nanotubes (CNTs) in Ag/g-C3N4 facilitated photocatalytic performance through efficient separation and transfer of photogenerated e-h pairs (charges) in Ag/g-C3N4 that consequently generated very pure and significant H2. Among several tested ratios (wt. %) of Ag/g-C3N4/CNTs, 1.82 (Ag/g-C3N4) and 2.00 (and Ag/g-C3N4/CNTs) were found to be highly efficient that harvested maximum visible-light and produced H2 @1.48 mmol h−1 and 1.78 mmol h−1. We witnessed distinctive role of CNTs as an electron collector and carrier to separate photogenerated e-h pairs to facilitate photocatalysis for H2 generation together with possible utility of Ag and CNTs doped materials with regard to energy transformation.  相似文献   

12.
Formation of oxygen vacancy is emerging as one type of promising defect engineering in the preparation of inorganic functional composites. In this work, a novel composite upon the calcination of the nanosheets Bi6O6(OH)3(NO3)3·1.5H2O (BBN) and g-C3N4 was prepared. A large amount of oxygen vacancies was revealed by electron spin resonance (ESR) and Raman spectroscopy. These intriguing structural characters render the as-prepared composite with excellent interfacial charge transfer and photo-stimulated response as shown by electrochemical impedance spectroscopy (EIS) and photocurrent measurement. Upon visible-light activation, such composite enables photocatalyse H2 evolution with a rate of 181 μmol h?1 g?1 around the 4.2 times that of pure g-C3N4 as a reference. Such composite catalyst exhibits excellent recycling and reusable behaviors. The formation of BBN/CN heterojunction and the existence of oxygen vacancies are the main reasons for the distinctly improvement of its photocatalytic activity, which has been verified by theoretical calculations.  相似文献   

13.
The incomplete polymerization of graphite carbon nitride (g-C3N4) due to the kinetic problems resulted in its high recombination rate of photo-generated electron-hole pairs. Hence, cyano-containing carbon nitride with coral-like morphology (CCCN) was prepared by the molten salt method with heptazine-based melem as precursor, which presented excellent separation rate of photo-generated electron-hole pairs. SEM exhibited that CCCN owned coral-like morphology which exposed ample active sites and enhanced the capture ability of visible light while FT-IR and XPS demonstrated that cyano groups appearing in coral-like carbon nitride enhanced the separation rate of photo-induced charge carriers. The synergistic effect of coral-like morphology and cyano groups endowed CCCN-15% with superior performance of both the photocatalytic H2 evolution (4207 μmol h?1 g?1) and Cr (Ⅵ) reduction (k = 0.059 min?1), approximately 16.8 and 6.0 times that of g-C3N4, which was comparable among the similar materials. Density functional theory calculation (DFT) revealed that cyano groups decreased the bandgap and strengthened the activation degree of reaction substrate, which enhanced the thermodynamic driving force and the interaction between catalyst and substrate. This work provided a potential strategy for both the renewable energy generation and environmental restoration.  相似文献   

14.
A facile construction of B and P doped carbon nitride as a potential photo-catalyst for splitting water to generate hydrogen or oxygen and BPA removal under visible light. B and P doping are confirmed by a series of characterizations. As the symmetrical π-conjugated rings of g-C3N4 could be destroyed by B and P doping to enhance the visible-light absorbance and n → π1 electronic transition to provide a new pathway for the directional separation of photoexcited electrons to boost the photocatalytic activity. Significantly, the CN-BP catalyst demonstrates excellent H2 and O2 evolution rates of 4.0 mmolH2 h−1 g−1 and 0.3 mmolO2 h−1 g−1 under visible light, which is about ∼3.8 and 21.6 times higher than that of g-C3N4, respectively. Notably, without sacrificial agent, the CN-BP could remove BPA completely by oxidation to generate 30 μmol h−1g−1 H2. Both DFT calculations and characteristic results reveal that B and P doped carbon nitride reduce band gap energy, improve light harvesting and separation rate of electron-holes carriers for upgrading the photocatalytic activity.  相似文献   

15.
A highly active photocatalyst based on g-C3N4 coated SrTiO3 has been synthesized simply by decomposing urea in the presence of SrTiO3 at 400 °C. The catalyst demonstrates a high H2 production rate ∼440 μmol h−1/g catalyst in aqueous solution under visible light irradiation, which is much higher than conventional anion doped SrTiO3 or physical mixtures of g-C3N4 and SrTiO3. The improved photocatalytic activity can be ascribed to the close interfacial connections between g-C3N4 and SrTiO3 where photo-generated electron and holes are effectively separated. The newly synthesized catalyst also exhibited a stable performance in the repeated experiments.  相似文献   

16.
Bio-mimetic C-doped graphitic carbon nitride (g-C3N4) with mesoporous microtubular structure has been prepared by a simple chemical wet bio-template impregnation approach (direct impregnation and hydrothermal impregnation) using urea as a precursor and kapok fibre as bio-template and in-situ carbon dopant. Our finding indicated that the hydrothermal impregnation had induced more in-situ C-doping in g-C3N4 as compared to the direct impregnation approach. The introduction of in-situ C doping in the g-C3N4 and the mesoporous microtubular structure remarkably enhanced light-harvesting capability up to near infrared regions. The photocurrent measurement and electrochemical impedance spectroscopy (EIS) analysis suggested that the bio-template C-doped g-C3N4 exhibits a superior photoinduced electron-hole pairs separation efficiency due to C doping and mesoporous microtubular structure significantly promotes excellent conductivity and electron redistribution in the sample. C-doped graphitic carbon nitride sample prepared by the hydrothermal (HB/g-C3N4) approach exhibits excellent photocatalytic hydrogen production with an H2 production rate of 216.8 μmol h−1 g−1 which was a 1.3 and 2.9 improvement over C-doped graphitic carbon nitride prepared by direct impregnation (DB/g-C3N4) and pristine g-C3N4, respectively. This study provides new insights into the development of low-cost and sustainable photocatalysts for photocatalytic hydrogen production.  相似文献   

17.
In this work, a series of carbon dots (CDs) modified hollow g-C3N4 spheres (HCNS-Cx) were constructed via a double in situ approach using cyanamide and glucose as precursors, respectively. As HCNS-Cx was synthesized by one-step in situ thermal polymerization of two precursors, which could make CDs and g-C3N4 keep tight connection and increase the separation of the photogenerated electron-hole pairs. The average diameter and wall thickness of the HCNS-Cx are about 355 nm and 55 nm, respectively. Under the visible light irradiation, the H2 evolution rate (HER) of HCNS-C1.0 (2322 μmol g?1 h?1) was 19 times that of bulk g-C3N4 (122 μmol g?1 h?1) and 1.8 times that of HCNS without CDs modification (1289 μmol g?1 h?1), respectively. And its apparent quantum efficiency is 17.93% at 420 nm. The specific surface area, light absorption capacity, and charge carrier mobility of HCNS-Cx could be dramatically improved due to the introduction of CDs and hollow structures of g-C3N4 spheres, resulting in a significant improvement of photocatalytic activity.  相似文献   

18.
The weaker van der Waals force between layers inhibits the interlayer electron migration, which greatly limiting the enhancement of the photocatalytic activity over graphitic carbon nitride (g-C3N4). Herein, the metal-free sulfur-doped 2D/3D van der Waals (vdW) homojunction (2D/3D CNSCN) that containing 2D sulfur-doped g-C3N4 nanosheets (CNS) and 3D g-C3N4 flower-like hierarchical structure (CN) was fabricated. Thanks to the cooperative effect of 2D-3D structural and good compatibility between CNS and CN, an in situ formed 2D/3D vdW homojunction served as the driving force for promoting charge carrier separation and transfer. The optimal photocatalytic H2 evolution of 2D/3D CNSCN reached up to 2196 μmol h?1g?1, which was 4.1 and 3.2 times higher than that of CN and CNS, respectively. 10 mg of the 2D/3D CNSCN photocatalyst was able to totally remove of rhodamine B (RhB) solution in less than 80 min under the visible light. This study provides new opportunities to construct novel 2D/3D mixed-dimensional vdW homojunction, and broad interest in vdW homojunction research for the applications in energy conversion and environmental protection field.  相似文献   

19.
In this study, activated carbon is produced from defatted hazelnut bagasse at different activation conditions. The catalytic activities of activated carbons are evaluated for NaBH4 methanolysis and electrooxidation. These materials are characterized by N2 adsorption-desorption, FTIR, SEM-EDS and XPS and results show that these materials are prepared successfully. N2 adsorption-desorption results reveal that activated carbon (FH3-500) has the highest BET surface area as 548 m2/g, total pore volume as 0.367 cm3/g and micropore volume as 0.205 cm3/g. On the orher hand, as a result of hydrogen production studies, FH3-500 activated carbon catalyst has the highest initial hydrogen production rate compared to other materials. At 50 °C, this metal-free activated carbon catalyst has a high initial hydrogen production rate of 13591.20 mL/min.gcat, which is higher than literature values. Sodium borohydride electrooxidation measurements reveal that FH2-500 also has the highest electrocatalytic activity and stability. Hazelnut pulp-based activated carbons are firstly used as a metal-free catalyst in the methanolysis and electrooxidation of sodium borohydride, and its catalytic activity is good as a metal-free catalyst. The results show that the hazelnut pulp-based activated carbon catalyst is promising as a metal-free catalyst for the methanolysis and electrooxidation of sodium borohydride.  相似文献   

20.
Metal-free catalysts (C–KOH–P) containing phosphorus (P) and oxygen (O) prepared by the modification with phosphoric acid (H3PO4) of activated carbon (C–KOH) obtained by activation of Chlorella Vulgaris microalgae with potassium hydroxide (KOH) were investigated for the hydrogen (H2) generation reaction from methanolysis of sodium borohydride (NaBH4). Elemental analysis, XRD, FTIR, ICP-MS, and nitrogen adsorption were used to analyze the characteristics of metal-free catalysts. The results showed that groups containing O and P were attached to the carbon sample. In the study, the hydrogen production rates (HGR) obtained with metal-free C–KOH and C–KOH–P catalysts were 3250 and 10,263 mL/min/g, respectively. These HGR values are better than most values obtained for many catalysts presented in the literature. Besides, relatively low activation energy (Ea) of 27.9 kJ/mol was obtained for this metal-free catalyst. The C–KOH–P metal-free catalyst showed ideal reusability with 100% conversion and a partial reduction in the H2 production studies of NaBH4 methanolysis after five consecutive uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号