首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising solutions overcoming future energy crisis and environment pollution in the automotive industry. However, PEMFC is vulnerable to the circulation of hydrogen mass flow rate and pressure, which may cause the degradation of the PEMFC's anode components and reduction of output performance over time. Thus, the control of the hydrogen supply system draws attention currently and is critical for the durability and stability of the PEMFC system. In this study, a model predictive control (MPC) approach for hydrogen circulation system is developed to regulate the hydrogen flow circulating. A model of the hydrogen supply system that contains a flow control valve, a supply manifold, a return manifold and a hydrogen circulating pump is firstly developed to describe the behavior of the hydrogen mass flow dynamics in the PEMFC. Subsequently, a hydrogen circulating pump MPC scheme is designed based on the piecewise linearized model of hydrogen circulation as well as the switched MPC controllers. By predicting the pressure of the return manifold and the angle velocity of the pump, the proposed MPC approach can manipulate the hydrogen circulating pump to achieve efficient and stable operation of the PEMFC.  相似文献   

2.
车用质子交换膜燃料电池发动机系统控制技术现状研究   总被引:5,自引:0,他引:5  
质子交换膜燃料电池(PEMFC)以其高能量密度、工作温度低、无污染排放、结构紧凑等优点被公认为发展前景最好的汽车动力源之一,对车用(PEMFC)发动机系统的氢气/空气供给系统、水/热管理系统、安全系统、压力,温湿度控制系统的技术现状进行了系统分析,对PEMFC发动机的控制理论,如模糊控制、预测控制与应用技术发展方向进行了研究。  相似文献   

3.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   

4.
In this paper, the energy efficiency of the Proton Exchange Membrane Fuel Cell (PEMFC) systems based on the fueling rates is systematically investigated. The PEMFC system under dynamic load must be operated close to the Maximum Efficiency Point (MEP) to obtain the highest energy efficiency. This is a difficult task because the MEP is dependent on the PEMFC parameters and the control PEMFC variables, besides the load profile. Thus, the MEP must be tracked dynamically with a safe search speed and funded accurately during the stationary regimes. Consequently, a real-time control is recommended to be used. The Extremum Seeking (ES) control scheme is proposed here to evaluate the FC net power at the MEP under different fueling rates and load profiles. Some interesting conclusions are obtained based on the comparative method proposed using as reference a base control technique or a PEMFC stack: 1) the MEP is different based on the control of the fuel or air flow rate; 2) the energy efficiency increases if both fueling flow rates are controlled; 3) the energy efficiency is less sensitive to power losses if the MEP is tracked by the ES controller based on air flow rate; 4) the strategy of load following control considering the fuel flow rate as an input variable is recommended based on the observation that the MEP is more sensitive to this in comparison to the air flow rate; 5) the design of an appropriate MEP tracking controller should equally focus on safe operation and the increase of the performances such as the search speed and tracking accuracy under dynamic load. All these remarks are based on an extensive numerical simulation, which are highlighted in this paper by the main results shown.  相似文献   

5.
For analyzing the performance of 120 kW polymer electrolyte membrane fuel cell (PEMFC) system and its air supply system, an air system test bench was built, then applied on a 120 kW PEMFC system test bench composed of air supply subsystem, hydrogen supply subsystem, stack, cooling subsystem and electronic control subsystem. The strategy composed of feedforward table and Piecewise proportional integral (PI) feedback control strategy is employed to regulate the flow rate and pressure of air supply system. Firstly, the air compressor map and the mapping relationship between the speed of air compressor, opening of back-pressure valve and stack current are obtained by carrying out experiments on the PEMFC air system bench. Then, the max output performance, steady-state performance, the startup performance, the dynamic response abilities of PEMFC system are tested, respectively. During the experiments, performances under different test conditions were analyzed by comparing parameters such as voltage inconsistency, average voltage, minimum voltage, voltage range, net power of the PEMFC system, and stack power. The test results show that the air supply system can provide qualified flow rate and pressure for the PEMFC stack. The peak power of the stack is 120 kW and net power of the system is 97 kW when the current is 538 A. The response time from rated net power to idle net power is 12 s and from idle net power to rated net power is 23 s. The overshoot of average voltage and minimum voltage in the process of increasing load is both 0.01 V, which are 0.015 V and 0.02 V lower than that when the load is decreased, respectively. The dynamic response speed and stability of the PEMFC system in the process of decreasing the load are better than those in the process of increasing the load.  相似文献   

6.
Fuel cell powered systems generally have a high current and a low voltage. Therefore, the output voltage of the fuel cell must be stepped-down using a DC-DC buck converter. However, since the fuel cell and converter have different dynamics, they must be suitably coordinated in order to satisfy the demanded load. Accordingly, this study commences by constructing a MATLAB/Simulink model of a proton exchange membrane fuel cell (PEMFC) system comprising a PEMFC stack, an air/fuel supply system, and a temperature control system. The validity of the PEMFC model is demonstrated by comparing the simulation results obtained for the polarzation curves of a single fuel cell with the corresponding experimental curves. A model is then constructed of the DC-DC buck converter used to step-down the PEMFC output voltage. In addition, a sliding mode control (SMC) scheme is proposed for the DC-DC buck converter which guarantees a low and stable output voltage given transient variations in the output voltage of the PEMFC. Finally, a model is constructed of a DC-AC inverter with a pulse width modulated (PWM) control scheme which enables the PEMFC stack to supply the grid or power AC applications directly. Overall, the combined PEMFC/DC-DC buck converter/DC-AC inverter model provides a powerful and versatile tool for the design and development of a wide range of PEMFC power systems.  相似文献   

7.
Proton exchange membrane fuel cell (PEMFC) s are faced with dynamical load scenario in practical applications, and the resulting temperature variation will decrease the performance and consequently shorten the fuel cell lifetime. To address this problem, a control strategy for regulating the stack temperature is proposed in this paper. Firstly, a thermal management-oriented dynamic model of a water-cooled PEMFC system is built to facilitate the control design. Secondly, considering that the stack temperature should be maintained in a certain range regardless of the dynamical changing current demand, a Barrier Lyapunov function is employed to construct a feedback error of the stack temperature. Thirdly, a set of adaptation laws is designed to estimate the unknown parameters related to the gas flow rates in the flow fields. Particularly, a dynamic inversion tracking methodology is applied to design the non-affine input. A Lyapunov method based analysis demonstrates the stability and convergence of the closed-loop properties. Simulation results are provided to show that the proposed control strategy can satisfy all the control objectives and enhance the control performance compared to the proportional-integral controlled case.  相似文献   

8.
Yanhua Liu  Ron J. Patton  Shuo Shi 《风能》2020,23(7):1523-1541
Offshore wind turbines suffer from asymmetrical loading (blades, tower, etc), leading to enhanced structural fatigue. As well as asymmetrical loading different faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance. Individual pitch control (IPC) can achieve rotor asymmetric loads mitigation, but this is accompanied by an enhancement of pitch movements leading to the increased possibility of pitch system faults, which exerts negative effects on the IPC performance. The combined effects of asymmetrical blade and tower bending together with pitch sensor faults are considered as a “co‐design” problem to minimize performance deterioration and enhance wind turbine sustainability. The essential concept is to attempt to account for all the “fault effects” in the rotor and tower systems, which can weaken the load reduction performance through IPC. Pitch sensor faults are compensated by the proposed fault‐tolerant control (FTC) strategy to attenuate the fault effects acting in the control system. The work thus constitutes a combination of IPC‐based load mitigation and FTC acting at the pitch system level. A linear quadratic regulator (LQR)‐based IPC strategy for simultaneous blade and tower loading mitigation is proposed in which the robust fault estimation is achieved using an unknown input observer (UIO), considering four different pitch sensor faults. The analysis of the combined UIO‐based FTC scheme with the LQR‐based IPC is shown to verify the robustness and effectiveness of these two systems acting together and separately.  相似文献   

9.
This paper develops robust control and power management strategies for a 6 kW stationary proton exchange membrane fuel cell (PEMFC) hybrid power system. The system consists of two 3 kW PEMFC modules, a Li–Fe battery set, and electrical components to form a parallel hybrid power system that is designed to supply uninterruptible power to telecom base stations during power outages. The study comprises three parts: PEMFC control, power management, and system integration. First, we apply robust control to regulate the hydrogen flow rates of the PEMFC modules in order to improve system stability, performance, and efficiency. Second, we design a parallel power train that consists of two PEMFC modules and one Li–Fe battery set for the uninterruptible power supply (UPS) requirement. Lastly, we integrate the system for experimental verification. Based on the results, the proposed robust control and power management are deemed effective at improving the stability, performance, and efficiency of the stationary power system.  相似文献   

10.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

11.
锅炉二次风系统协调控制的研究   总被引:1,自引:0,他引:1  
赵征  田亮  刘吉臻  邹晓昕 《动力工程》2007,27(3):367-371
采用机理分析和统计分析的方法,建立了二次风系统非线性动态模型,并通过仿真验证了模型的有效性和准确性.该模型分析了目前存在的两种二次风控制系统的优缺点,发现了影响控制品质的主要因素是系统的相互关联,二次风控制的主要矛盾是风量的响应速度和风压的波动.为解决这一矛盾,设计了二次风协调控制系统,优化了动态控制品质.  相似文献   

12.
The design of the flow field structure has an important impact on the performance of PEMFC. An excellent design of the flow field will optimize the gas-liquid distribution inside the fuel cell, and enhance the diffusion of the reactant gases while reducing problems such as water flooding or uneven mass transfer of reactants, thus improving the overall performance of the cell. A new form of flow field based on the design ideas of Constructal-theory and Murray's Law was proposed in this paper. In this study, the PEMFC with the new and conventional flow fields were compared under the same conditions, and it is proved that the cell with the new flow field has a more balanced performance on output power and global pressure drop in contrast with conventional flow fields. In this study, the output power density of the PEMFC with the new flow field increased by an average of 1.35% compared to the PEMFC with Parallel flow field and Single Channel Serpentine flow field, and the pressure drop was reduced by 47.67% and 90.06% respectively compared to the PEMFC with the Single Channel Serpentine flow field and Double Channel Serpentine flow field. Meanwhile, the distribution of current density characteristics in a PEMFC with the new flow field was investigated and optimization of its structure size is analyzed. The reason for its non-uniform distribution of current density was revealed in this study, and an improvement scheme was proposed to improve the uniformity of current density, and the results of structural optimization research will have a certain guiding effect on practical applications.  相似文献   

13.
In this study, a model based diagnosis of a hydrogen-fueled 1-kW proton exchange membrane fuel cell (PEMFC) system was conducted based on exergy analysis to identify faulty components. Faulty components of balance of plant (BOP) were experimentally simulated by reducing the rpm signals of the pump, fan, and air and fuel blowers; reducing the output signals of the air and fuel flow meters; increasing the output signal of the temperature sensor; opening the valve between the air blower and the air flow meter; and blocking the heat exchange area during the operation of the PEMFC system. The irreversibility rate, malfunction (MF) and dysfunction (DYS) of each component were calculated for the case under normal condition and simulated failure conditions using the observed data. The residuals of the MF and relative malfunction (RMF) between the normal and failure conditions were the fault indicators used to identify the faulty components in the system. The proposed diagnosis method employing both the MF and the RMF was found to be not only simple but also effective.  相似文献   

14.
In the state-of-the-art high-power self-humidifying proton exchange membrane fuel cell (PEMFC) systems for vehicles, the high potential and low water production at idle or low load conditions strongly cause corrosion and decay of key materials and thus reduce durability. Therefore, the control technology of system-level durability requires an innovative design. Cathode recirculation is beneficial in alleviating the above unfavorable factors from the perspective of regulating oxygen and vapor partial pressure. This paper presents a pioneering study on the dynamics and control of cathode recirculation in vehicle high-power self-humidifying PEMFC system under low load conditions. First, a control-oriented dynamic model of the vehicle PEMFC system with a cathode recirculation loop is developed and the steady-state and dynamic performance is verified with experimental data from a 120 kW system. Active control of the intake component is achieved by re-feeding the reacted cathode gas to the air compressor outlet through a recirculation pump. On this basis, a high-potential controller based on oxygen partial pressure regulation is designed in combination with the dynamics of cathode recirculation. Results show that the designed dynamic fuzzy logic segmented proportional integral derivative controller with feedforward compensation achieves the optimal high-potential control effect by managing the oxygen partial pressure under variable low load conditions. It not only has excellent anti-disturbance ability but also effectively reduces the dynamic response time, transient overshoot, and steady-state error to satisfy the rapid and stable voltage output. Finally, the concomitant effect of humidification brought by the implementation of the optimal high-potential controller is analyzed, and the results show that the proton membrane is completely humidified.  相似文献   

15.
An ejector primary gas flow control solution based on three solenoid valves is designed, implemented and tested in a 5 kW proton exchange membrane fuel cell (PEMFC) system with ejector-based anode gas recirculation. The robust and cost effective combination of the tested flow control method and a single ejector is shown to achieve adequate anode gas recirculation rate on a wide PEMFC load range.In addition, the effect of anode gas inert content on ejector performance in the 5 kW PEMFC system is studied at varying load and anode pressure levels. Results show that increasing the inert content increases recirculated anode gas mass flow rate but decreases both the molar flow rate and the anode inlet humidity.Finally, the PEMFC power ramp-rate limitations are studied using two fuel supply strategies: 1) advancing fuel supply and venting out extra fuel and 2) not advancing fuel supply but instead using a large anode volume. Results indicate that the power of the present PEMFC system can be ramped from 1 kW to 4.2 kW within few hundred milliseconds using either of these strategies.  相似文献   

16.
This paper applies multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system. From the system point of view, a PEMFC can be modeled as a two-input-two-output system, where the inputs are air and hydrogen flow rates and the outputs are cell voltage and current. By fixing the output resistance, we aimed to control the cell voltage output by regulating the air and hydrogen flow rates. Due to the nonlinear characteristics of this system, multivariable robust controllers were designed to provide robust performance and to reduce the hydrogen consumption of this system. The study was carried out in three parts. Firstly, the PEMFC system was modeled as multivariable transfer function matrices using identification techniques, with the un-modeled dynamics treated as system uncertainties and disturbances. Secondly, robust control algorithms were utilized to design multivariable H controllers to deal with system uncertainty and performance requirements. Finally, the designed robust controllers were implemented to control the air and hydrogen flow rates. From the experimental results, multivariable robust control is shown to provide steady output responses and significantly reduce hydrogen consumption.  相似文献   

17.
The accurate control of automotive fuel cell oxygen excess ratio (OER) is necessary to improve system efficiency and service life. To this end, an anti-disturbance control driven by a feedback linearization model predictive control (MPC)-based cascade scheme is proposed. It considers strong nonlinear coupling and disturbance injection of fuel cell oxygen supply. A six-order nonlinear fuel cell oxygen feeding model is presented. It is further formulated using an extended state observer to rapidly reconstruct the OER, to overcome the slow response and interference errors of sensor measurements. In the proposed cascade control, the outer loop is the anti-disturbance control which is used to realize the optimized OER tracking and the inner loop via the feedback linearization to linearize the oxygen feeding behaviors conducts MPC to regulate the air compressor output mass flow. The feedback linearization demonstrates a robust tracking performance of nonlinear outputs, and the integral absolute error of anti-disturbance control is 0.3021 lower than that of PI control under a custom test condition. Finally, the numerical validation on a hybrid driving cycle indicates that the proposed cascade control can regulate the fuel cell OER with an average absolute error of 0.02313 in the high air compressor operation efficiency zone.  相似文献   

18.
Proton exchange membrane fuel cell (PEMFC) receives increasing attention as an alternative in small-scale residential distributed generation (DG) application, especially for remote cold region where the utility electricity is not accessible. The open-cathode PEMFC is featured with the integrated fabrication of air supply and coolant flow cathode. Although simple, the waste heat of the exhaust air is difficult to reuse by heat exchangers, because of the low exhaust temperature. To this end, this paper investigates a hybrid structure consisting of open-cathode PEMFC and heat pump. It is revealed in this paper that the oxygen excess ratio of open-cathode PEMFC is usually as big as 100, which makes it doable and safe to directly exporting the exhaust air into the indoor environment. The temperature of the mixed air is thereby lifted. The thermal load of the heat pump is consequently alleviated and the power consumption is reduced. A comprehensive quantitative model is developed by considering the fuel cell electrochemical characteristic, cathode thermodynamics and heat pump coefficient. A case study is carried out by comparing the coefficient of performance (COP) of the system with and without the cogeneration design, showing a 7.6% improvement of the proposed hybrid structure. The results of the paper depict a promising prospect in accelerating the commercialization of open-cathode PEMFC in the field of domestic cogeneration filed.  相似文献   

19.
潜艇燃料电池AIP氢燃料活性炭低温吸附储存   总被引:1,自引:0,他引:1  
设计利用潜艇液氧冷量的燃料电池(FC)-AIP活性炭低温吸附储氢系统,在模拟潜艇航行中晃动和振动的平台上,测试氢在活性炭上的吸附等温线和储氢系统在为质子交换膜燃料电池(PEMFC)供气时的特性。结果表明,吸附等温线受平台晃振的影响小;温度为113K、压力为6MPa时,比表面积为1450m2.g-1的SAC-02活性炭储氢系统的质量储氢密度可超过当前艇用储氢合金的质量储氢密度;在2kW PEMFC电堆典型工况所需的氢气量(质量流率21.44L.min-1)下,通过充气过程的液氧预冷和放气过程的循环介质加热,可使储罐中心和壁面在整个过程中的最大温差小于5℃。活性炭低温吸附储氢系统的质量密度和储放氢特性能满足艇用FC-AIP系统的要求。  相似文献   

20.
This paper investigates the issue of performance optimization for proton exchange membrane fuel cell (PEMFC) system. In PEMFC system, the system efficiency is the key parameters to evaluate the system performance which is sensitive to the air flow rate. Thus, the careful selection of the air flow rate is crucial to ensure efficient, reliable and durable operation of the PEMFC system. In this paper, the dynamic response of the system under variable air flow rate is studied in detail by means of experiments on the built 5 kW PEMFC system with 110 cells and a catalyst active area of 250 cm2. The oxygen excess ratio (OER) is defined to indicate the state of oxygen supply. The experimental results show that the maximum efficiency is existed under certain net current. The OER conditions have the optimal characteristic for system efficiency. Through the optimization of system performance, the system efficiency can be increased by 12.2% on average. At the same time, the system dynamic characteristic under oxygen starvation and oxygen saturation are analyzed in detail based on the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号