首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
The different methods of producing Green Hydrogen have been discussed in detail in this article. The implications and significance of employing green hydrogen in the steel and iron industries have been brought to light. Carbon Dioxide (CO2) is a significant environmental gas pollutant which is released in large quantities by steel mills and other industrial facilities. It is hoped that the appropriate measures would be taken to minimize the emission of hazardous gases, such as CO2, from each facility. The green hydrogen idea is a new technology that is being used as an alternative energy source for the sectors listed above. The most important step in reducing CO2 emissions is to collect it and store it in a secure location. In this article, the main goal and scope is to analyse various methodologies to minimize CO2 emissions in Iron and Steel Industries as well as compare with noble green hydrogen technology. Here, the state of art for the emission of CO2 as well as the recommendations of Green Hydrogen Technology are emphasized which is the novelty of this article.  相似文献   

2.
The article provides a review of the current hydrogen production and the prospects for the development of the production of “green” hydrogen using renewable energy sources in various countries of the world that are leaders in this field. The potential of hydrogen energy in such countries and regions as Australia, the European Union, India, Canada, China, the Russian Federation, United States of America, South Korea, the Republic of South Africa, Japan and the northern countries of Africa is considered. These countries have significant potential for the production of hydrogen and “green” hydrogen, in particular through mining of fossil fuels and the use of renewable energy sources. The quantitative indicators of the production of “green” hydrogen in the future and the direction of its export are considered; the most developed hydrogen technologies in these countries are presented. The production of “green” hydrogen in most countries is the way to transition from the consumption of fossil fuels to the clean energy of the future, which will significantly improve the environmental situation, reduce greenhouse gas emissions and improve the energy independence of the regions.  相似文献   

3.
Owing to increasing demands for clean energy, caused by global warming, renewable energy sources have attracted significant attention. However, these sources can affect the reliability of electrical grids owing to their intermittency. Power-to-gas technology is expected to help address this issue. In this study, the CO2 methanation process, which yields synthetic natural gas (SNG) via the synthesis of CO2 and H2 through proton exchange membrane (PEM) water electrolysis using surplus electricity generated from renewable energy, was evaluated and optimized based on techno-economic analyses. Requirements for the introduction of SNG produced through CO2 methanation in domestic natural gas markets are presented by considering various scenarios. Results indicate that, even if the electricity costs, including system marginal price and renewable energy costs, are minimal, the costs for PEM water electrolysis and CO2 methanation must be reduced by ~$550/kW and 25%, respectively, relative to current levels for the viable introduction of SNG in domestic markets.  相似文献   

4.
    
The present review paper aims to shed lights on the concept of fully green energy system which includes both the source of energy and the storage system. The objective is to propose an energy label “Green to Green” (G2G) that identifies systems involving simultaneously green source and green storage, as an efficient solution to achieve a significant reduction in the dangerous level of pollution that most countries have reached today. Green sources include mainly renewable energy systems such as solar, wind, geothermal and wave energy systems. In its turns green storage includes pumped hydroelectric, flywheel, hydrogen and compressed air. Moreover, and as a case investigation on G2G concept, the paper reviews the main solar-hydrogen coupling systems, that are categorized within four categories parabolic trough-hydrogen, solar tower-hydrogen, photovoltaic-hydrogen and solar chimney-hydrogen.  相似文献   

5.
    
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country, green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country, including geothermal, hydropower, wind, solar, biomass, and ocean. Opportunities for several utilization pathways include transportation, industry, utility, and energy storage. From the analysis, this study proposes a roadmap for a green hydrogen economy in the country by 2050, divided into three phases: I–green hydrogen as industrial feedstock, II–green hydrogen as fuel cell technology, and III–commercialization of green hydrogen. On the other hand, the analysis identified several challenges, including technical, economic, and social aspects, as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries.  相似文献   

6.
    
Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential.Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations.  相似文献   

7.
    
In this research paper the effect of introducing financial incentives to promote green electricity generation, in Jordan, was studied. The incentives investigated include tax reduction, introduction of a grace period, provision of capital or reduced discount rate, reduced depreciation life of assets, and the usage of accelerated depreciation methods. The obtained results show that implementing such tools leads to positive financial improvements that serve in encouraging private sector to invest in renewable energy technologies. It is revealed that variations of both grace period and taxation rate lead to minor impacts on internal rate of return and net present value for such projects. On the other hand, the increase in depreciation period makes electricity generated from renewable sources more attractive, in terms of unit price of generated electricity, using the straight line depreciation method. In the contrary, the choice of accelerated depreciation method leads to better attractiveness as the depreciation period is reduced. The effect of discount rate variations is noticeable, and affects economics of such systems significantly. Finally, the results confirmed that wind energy is ranked first, followed by PV and concentrated solar power schemes are the last under the studied conditions in Jordan.  相似文献   

8.
Rural electrification with renewable energy technologies (RETs) offers several benefits to remote areas where diesel generation is unsuitable due to fuel supply constraints. Such benefits include environmental and social aspects, which are linked to energy access and poverty reduction in less-favored areas of developing countries. In this case, multi-objective methods are suitable tools for planning in rural areas. In this study, assessment of rural electrification with renewable energy systems is conducted by means of goal programming towards fuel substitution. The approach showed that, in the Non-Interconnected Zones of Colombia, substitution of traditional biomass with an electrification scheme using renewable energy sources provides significant environmental benefits, measured as land use and avoided emissions, as well as higher employment generation rates than diesel generation schemes. Nevertheless, fuel substitution is constrained by the elevated cost of electricity compared to traditional biomass, which raises households’ energy expenditures between twofold to five times higher values. The present approach, yet wide in scope, is still limited for quantifying the impact of energy access improvements on poverty reduction, as well as for the assessment of energy system's technical feasibility.  相似文献   

9.
    
Green hydrogen is increasingly considered a vital element for the long-term decarbonization of the global energy system. For regions with scarce land resources, this means importing significant volumes of green hydrogen from regions with abundance of renewable energy. In producing countries, this raises significant sustainability questions related to production and export. To assess these sustainability-related opportunities and challenges, the authors first present a review of renewable energy deployment in the electricity sector, and then extend it to the foreseeable opportunities and risks of green hydrogen production in exporting countries. The paper finds that questions of freshwater and land availability are critical from an environmental and a socio-economic point of view, and that the development of international standards for the governance of hydrogen-related projects will be crucial. These should also address potential conflicts between the deployment of renewable energy for the decarbonization of local power grids, and the export of green hydrogen.  相似文献   

10.
The planning of a hydrogen infrastructure with production facilities, distribution chains, and refuelling stations is a hard task. Difficulties may rise essentially in the choice of the optimal configurations. An innovative design of hydrogen network has been proposed in this paper. It consists of a network of green hydrogen refuelling stations (GHRSs) and several production nodes. The proposed model has been formulated as a mathematical programming, where the main decisions are the selection of GHRSs that are powered by the production nodes based on distance and population density criteria, as well the energy and hydrogen flows exchanged among the system components from the production nodes to the demand points. The approaches and methodologies developed can be taken as a support to decision makers, stakeholders and local authorities in the implementation of new hydrogen infrastructures. Optimal configurations have been reported taking into account the presence of an additional hydrogen industrial market demand and a connection with the electrical network. The main challenge that has been treated within the paper is the technical feasibility of the hydrogen supply chain, that is mainly driven by uncertain, but clean solar and wind energy resources. Using a Northern Italian case study, the clean hydrogen produced can be technically considered feasible to supply a network of hydrogen refuelling stations. Results show that the demands are satisfied for each time period and for the market penetration scenarios adopted.  相似文献   

11.
    
The paper offers a method for developing a universal system of automated design of an optimal structure of autonomous distributed hybrid energy complexes (ADHEC) and the means for regulation of the energy balance therein, i.e. control of the power flows circulating in the mentioned system. ADHEC will not only help unload the existing power system, but can also be used to produce “green” hydrogen. In general, the design of the optimal structure of ADHEC includes the following stages (subtasks): data research and creation of a statistical database of electric loads of consumers, the wind speed in the region under consideration, the hydroelectric potential of mountain and lowland rivers, and the solar energy, as well as the research and development of a database of converters of wind and water energy into electrical energy. The paper focused on the task of designing the optimal structure of the distributed hybrid generation system that will ensure the desired level of power generation at a minimal cost and with necessary functional reliability.  相似文献   

12.
Based on the European project RES2020, the analysis evaluates the energy strategies to be implemented in Spain in order to satisfy the EU Renewable Directive. The modelling framework relies on the technico-economic model TIMES-Spain, part of the Pan-European TIMES model used in the project. TIMES is a bottom-up technology rich optimisation model representing the whole energy systems of the countries. Among the results, it appears that the gap regarding the renewable deployment in Spain between the Business-as-Usual case (including the existing policies) and the EU Directive should be compensated mainly by the penetration of bioenergy in transport and industry, and by the implementation of conservation measures, which contribute to reduce the total energy demand and thus makes useless additional investments in renewable power plants compared to the Business-as-Usual case. Only higher climate mitigation ambitions result in an absolute increase in the renewable-based electricity generation compared to the Business-as-Usual case. Moreover, when allowed, Spain is offering renewable energy credits under the statistical transfer mechanism to other European countries. The cost increase of the modelled renewable and climate policies compared to the Business-as-Usual remains relatively minor.  相似文献   

13.
Optimal sizing study of hybrid wind/PV/diesel power generation unit   总被引:3,自引:0,他引:3  
In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented.The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system.  相似文献   

14.
欧盟在发展低碳经济的背景下通过制定具体且严格的温室气体减排和可再生能源发展目标,大力推广各种低碳能源技术的应用,积极倡导低碳化的能源转型。欧盟能源转型的理念和行动已成为各国制定能源政策的重要参考,并引领了当前全球能源转型的主流发展方向。本文在对欧盟各国能源转型战略进行梳理的基础上,归纳了各国能源转型的核心及关键措施,分析了欧盟低碳能源发展迅速的主要原因,并总结了欧盟能源转型对我国推进能源生产和消费革命的启示。  相似文献   

15.
An analytical job creation model for the US power sector from 2009 to 2030 is presented. The model synthesizes data from 15 job studies covering renewable energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper employs a consistent methodology of normalizing job data to average employment per unit energy produced over plant lifetime. Job losses in the coal and natural gas industry are modeled to project net employment impacts. Benefits and drawbacks of the methodology are assessed and the resulting model is used for job projections under various renewable portfolio standards (RPS), EE, and low carbon energy scenarios We find that all non-fossil fuel technologies (renewable energy, EE, low carbon) create more jobs per unit energy than coal and natural gas. Aggressive EE measures combined with a 30% RPS target in 2030 can generate over 4 million full-time-equivalent job-years by 2030 while increasing nuclear power to 25% and CCS to 10% of overall generation in 2030 can yield an additional 500,000 job-years.  相似文献   

16.
Green hydrogen energy is a natural substitute for fuel-based energy and it increases a country's long-term energy safety. Pakistan has been a victim of a severe energy crisis for the past few decades. In this context, this research addresses green hydrogen generation and renewable energy supply (i.e., wind, solar, biomass, public waste, geothermal and small hydropower) as an alternate energy source in Pakistan. The assessment is carried out through a two-step framework (i.e., Fuzzy-AHP and non-parametric DEA). Results show that Pakistan has abundant renewable power capacity from wind, which the light-duty transport in the country can opt. Almost 4.89 billion gallons of fuel are consumed annually in Sindh, whereas Punjab uses up around 6.92 billion gallons of fuel annually, which need to be substituted with 1.63 billion kg and 2.31 billion kg of wind-produced hydrogen, respectively. It has been discovered that solar and wind energy attain the same criterion of weights (i.e., 0.070) in-line with the commercial potential criterion. Besides, wind-generated power is ideal for green hydrogen generation in Pakistan, and the subsequent choice for green hydrogen energy is small hydropower and solar, which are also good for green hydrogen generation in the country. Hence, this research offers a solid recommendation for the use of wind energy, which is ideal for the production of Green Hydrogen energy in the country.  相似文献   

17.
Clean energy resources will be used more for sustainability improvement and durable development. Efficient technologies of energy production, storage, and usage results in reduction of gas emissions and improvement of the world economy. Despite 30% of electricity being produced from wind energy, the connection of wind farms to medium and large-scale grid power systems is still leading to instability and intermittency problems. Therefore, the conversion of electrical energy generated from wind parks into green hydrogen consists of an exciting solution for advancing the development of green hydrogen production, and the clean transportation sector. This paper presents a techno-economic optimization of hydrogen production for refueling fuel cell vehicles, using wind energy resources. The paper analyses three configurations, standalone Wind-Park Hydrogen Refueling Station (WP-HRS) with backup batteries, WP-HRS with backup fuel cells, and grid-connected WP-HRS. The analysis of different configurations is based on the wind potential at the site, costs of different equipment, and hydrogen load. Therefore, the study aims to find the optimized capacity of wind turbines, electrolyzers, power converters, and storage tanks. The optimization results show that the WP-HRS connected to the grid has the lowest Present Worth Cost (PWC) of 6,500,000 €. Moreover, the Levelized Hydrogen Cost (LHC) of this solution was found to be 6.24 €/kg. This renewable energy system produces 80,000 kg of green hydrogen yearly.  相似文献   

18.
    
Hydrogen can be used as an Energy Storage System (ESS) in a microgrid allowing to store surplus generation of variable renewable sources for later use. Research in the area mainly refers to the sizing of the components, however few studies evaluate the optimal technology selection and operation of microgrids using hydrogen as ESS. In this work, a model to determines optimal selection and to dispatch of Distributed Energy Resources (DER) allowing to evaluate the viability of hydrogen application as ESS in a microgrid is developed. The model is implemented in GAMS, using mixed integer linear programming, and applied in a hypothetical microgrid using as input data load profiles and commercial data available in literature. The results indicate the economical and environmental benefits of DER adoption, but the currently high investment costs make it infeasible to adopt hydrogen into a microgrid. However, when considering environmental costs and market prospects, the adoption of this technology became a good alternative, improving the energy management and reducing the total annual cost of the microgrid by 14.1%.  相似文献   

19.
The ongoing depletion of the fossil fuels and the dependency of the economies on them have made the need for new sources of energy more obvious. Renewable energy sources (RES) can ensure the sustainable development of the communities, and especially of those in which RES are in abundance. This study deals with the exploitation of RES in the Dodecanese Islands. Specifically, it is examined the optimum percentage by which the renewable sources can participate in the energy production system. Three different scenarios are examined. The first scenario considers that the existent system should be used less than 75% for environmental reasons, in the second scenario, a minimization of the electricity production cost is sought without any environmental constraints, while in the third scenario, it is considered that the RES’ participation in the electricity production would be 30% at most according to the current legislation. The environmental impacts from the energy production are quantified and a comparison is made between the impacts resulting from the existing system and the system found from the first scenario, because this is the scenario with the highest penetration of the RES to the energy production system.  相似文献   

20.
    
Diesel engine power plants are still widely used on many remote islands in South Korea, despite their disadvantages. Aiming to solve economic and environmental pollution problems, a remote island case study was conducted on Ui Island, aiming to offer a zero-emissions solution by using renewable energy sources in an off-grid application. Power was generated from solar, wind, and hydrogen sources. Li-ion batteries and hydrogen were used as energy storage systems. In addition, PV/battery, wind/battery, PV/wind/battery, PV/battery/PEMFC, wind/battery/PEMFC, and PV/wind/battery/PEMFC systems were simulated using the HOMER software to determine the optimal sizes and techno-economic feasibility. The results show that the PV/wind/battery/PEMFC system is the best system. The configuration of the system consists of 990-kW PV panels, 700-kW wind turbines, a 1088-kWh Li-ion battery bank, 534-kW converter, 300-kW PEMWE system, 300-kg hydrogen tank, and 100-kW PEMFC system. The total NPC of the system is $5,276,069, and the LCOE is 0.366 $/kWh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号