首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen production from water electrolysis with catalysts is a simple, effective, and environmentally friendly way. However, the slow kinetics of the oxygen evolution reaction (OER) directly affects the catalytic efficiency of water electrolysis during hydrogen production. While the high cost of noble metal catalysts limits their engineering applications. Therefore, there is an urgent need to develop an economical and abundant catalyst with efficient OER performance to replace noble metal catalysts to reduce costs. In this work, we propose a method for the preparation of composite catalytic electrodes by magnetically induced jet electrodeposition. Ni–Co–CeO2/Ni composite electrodes with a unique micro-nano structure and a large specific surface area were rapidly obtained through magnetically induced adsorption of nano-mixed particles. It was found that the Ni–Co–CeO2/Ni composite electrode deposited by magnetically induced electrodeposition exhibited a lower overpotential of 301 mV@10 mA/cm2 when the nano-mixed particle concentration was 2 g/L, and the corresponding Tafel slope was as low as 43.72 mV/dec. The key parameters of overpotential and Tafel slope reach or even outperform the best noble metal electrode in the industry, indicating that the Ni–Co–CeO2/Ni composite electrode had excellent OER catalytic performance. The study demonstrates that magnetically induced jet electrodeposition provides a new method for the preparation of catalytic electrodes, which has important applications in the electrolysis of water for hydrogen production.  相似文献   

2.
Bimetallic doping is widely used to enhance the oxygen evolution reaction (OER) activity of layered transition metal oxyhydroxides. However, the synergistic enhancement effect of different doping elements on the intrinsic OER activity is still obscure. In this study, the FeNi-codoped cobalt oxyhydroxide (CoOOH) as OER electrocatalyst was prepared successfully by simple electrodeposition and anodic oxidation methods, which exhibits superior OER activity to the single-metal doped CoOOH systems. Based on both experiments and first-principles calculations, the results show that the reaction kinetics enhance due to the codoping of Fe and Ni. Fe-doping changes the active site from Co to Fe and enhances the hydroxyl group adsorption. Ni doping benefits the electron transfer between Fe and intermediates, thereby enhancing the Fe–O covalent component to further balance the two steps of hydroxyl group adsorption and the deprotonation step. The essential mechanism of bimetal-doping in CoOOH provides theoretical support for the design and development of bimetal-doped Co-based OER catalysts.  相似文献   

3.
The oxygen evolution reaction (OER), which is an important process in water electrolysis, requires a high overpotential. There is a need for cheaper and more efficient catalysts for this process. Ni hydroxide-based OER catalysts are promising, but further research is required. This paper describes the use of a simple chemical bath deposition method for the preparation and characterization of three-dimensional microstructured Ni–Fe hydroxide electrochemical OER catalysts on nickel plates. The influences of the Fe ion content and pH of the chemical bath on the performance of the catalysts are addressed, allowing the preparation of an efficient and highly active catalyst. Thus, this study represents a stepping stone toward further developments in the field of water electrolysis.  相似文献   

4.
Electrochemical water splitting, as a promising approach to convert renewable electricity sources into chemical energy, is limited by bottleneck reaction of oxygen evolution (OER), and requires efficient/low-cost catalysts to accelerate OER dynamics. Metallic Ni, generally as the cathode of industrial alkali electrolyzer toward H2 production, is affordable yet inactive for anodic OER process. Enabling Ni metal with high OER activity directly serving as the anode will be an exciting progress, and undoubtedly full of challenges. Here, unexpectedly, metallic Ni demonstrates OER vitality through a superficial morphological reconstruction of Ni foam (NF) via hydrothermal-etching. The surface morphological change achieves Ni hierarchical nanosheet@nanoparticle array structure (r-Ni-1), ensuring the realization of optimal electrolyte contact and more surface exposure. More importantly, such configuration benefits for further achievement of fast transformation (in several seconds) into metal oxides and/or (oxy)hydroxides during the catalysis which are believed as the real active species. Above-mentioned in-situ transformation for conventional NF generally requires high-temperature treatment or long-term electrochemical activation for several hours. The catalytic performance of r-Ni-1 indeed outperforms most bimetallic catalysts with overpotential of 330 mV to yield 60 mA cm?2 in 1.0 M KOH, and it shows no obvious decay after a 60 h test. Our findings not only present a high-performance OER electrocatalyst, but also offer a possibility toward the simple preparation of anode materials for scale-up alkali electrolyzers.  相似文献   

5.
Electrochemical water-splitting is widely regarded as one of the essential strategies to produce hydrogen energy, while Metal-organic frameworks (MOFs) materials are used to prepare electrochemical catalysts because of its controllable morphology and low cost. Herein, a series of trimetallic porous Pt-inlaid Ni–Fe nanocubes (NCs) are developed with bifunctions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In the process of prepare the electrochemical catalysts, Pt nanoparticles are uniformly embedded in the Fe–Ni PBA cube structure, and ascorbic acid is employed as a reducing agent to reduce Pt2+ to Pt nanoparticles. In this work, the cubic structure of Fe–Ni PBA is maintained and the noble metal Pt nanoparticles are embedded. Remarkably, the formation of PBA cubes, Pt inlay and reduction are completed in one step, and Pt nanoparticles are embedded by a simple method for the first time. By employing acid etching method, a porous structure is formed on the PBA cube, which increases the exposed area of the catalyst and provides more active sites for HER and OER. Due to the porous structure, highly electrochemical active surface area and the embedded of highly dispersed Pt nanoparticles, the porous 0.6 Ni–Fe–Pt nanocubes (NCs) exhibits excellently electrocatalytic performance and durable stability to HER and OER. In this work, for HER and OER, the Tafel slopes are 81 and 65 mV dec−1, the overpotential η at the current density of 10 mA cm−2 are 463 and 333 mV, and the onset potential are 0.444 and 1.548 V, respectively. And after a 12-h i-t test and 1000 cycles of cyclic voltammetry (CV), it maintained high stability and durability. This work opens up a new preparation method for noble metal embedded MOF materials and provided a new idea for the preparation of carbon nanocomposites based on MOF.  相似文献   

6.
Metal organic frameworks (MOFs) are considered as ideal templates for the synthesis of metal-heteroatom co-doped carbon materials. However, the tedious heteroatoms doping pathways hinders the maximizing of catalytic performances. Herein, we synthesize a series of high-efficient Co and N, P heteroatoms co-doped carbon-based composites by first constructing a novel in-situ P-doped MOF with novel larger N, P-containing ligands and 2-methylimidazole as mixed ligands, and then calcining these MOFs at high temperature. During the pyrolysis process, the generated gases derived from the thermal decomposition of organic ligands are liberated from inner of P-ZIF materials to make the Co–Co2P@NC-P catalysts become loose and porous. When being used as electrode materials, the optimal Co–Co2P@NC-P3-700 catalyst exhibits excellent ORR and OER activity, the ORR performance is superior to the Pt/C catalysts, and the OER performance can be comparable with the commercial RuO2 catalyst. Moreover, when applied in the assembled primary Zn-air battery, the performances of Co–Co2P@NC-P3-700 catalyst can outperform the commercial Pt/C catalysts, exhibiting a high peak power density, specific capacity and a long-term stability. Furthermore, the catalytic active sites of catalysts are carefully investigated in this work.  相似文献   

7.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   

8.
It is very crucial to design and prepare environmentally friendly, efficient and sustainable oxygen evolution reaction (OER) catalysts for water splitting reaction. In this work, a series of Fe–Co–B nanosheets with different molar ratio of Fe/Co precursor have been recombined with bacterial cellulose based carbon nanofiber (BCCNF) through simple electroless deposition method at room temperature. It is indicated that, when the Fe/Co molar ratio is 1:3, Fe–Co–B/BCCNF exhibits an excellent catalytic property with overpotential of only 160 mV at 10 mA cm?2. Furthermore, it displays a prominent electrochemical stability, even over 30 h of OER process under alkaline condition. The strategy of designing 3D nanostructure and constructing metal-boride-based catalyst for OER provides valuable insights into efficient oxygen evolution.  相似文献   

9.
The preparation of high-efficiency, stable, and low-cost oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) electrocatalysts remains a challenge for new energy systems. In this study, three-dimensional (3D) cobalt-nickel bimetal MOFs were used as precursors to synthesize catalysts through thermal decomposition, carbonization, nitriding, oxidation, phosphating, sulfurizing, and selenization, respectively. In 1.0 M KOH electrolyte, the overpotential of Co/Ni-MOFs@Se for OER was 238 mV and the that of Co/Ni-MOFs@P for HER was 194 mV at a current density of 10 mA cm−2. Based on the excellent OER and HER performances of Co/Ni-MOFs@Se and Co/Ni-MOFs@P, these two materials were further assembled into electrodes for overall water splitting. Results showed that a potential of only 1.59 V was required to provide a current density of 10 mA cm−2. The electrodes also exhibited long-term durability in a 2000 min stability test without significant changes in the catalytic performances. According to the difference in the doped non-metal elements, an electrode pair with a suitable matching degree was constructed, thereby improving the overall water splitting performance. Thus, the controllable modification of the metal-organic frameworks (MOFs)-derived carbon materials (CMs) effectively improved the materials’ catalytic water splitting performance. It was possible to further develop an efficient, inexpensive, and low-cost assembled electrode pair.  相似文献   

10.
Metal-organic frameworks (MOFs) have been the subject of intensive structural tuning via methods like pyrolysis for superior performance in electrocatalytic oxygen and hydrogen evolution processes (OER and HER) and supercapacitors. Here, a Co-MOF based on 2-methylimidazole was synthesized using a precipitation approach, and its electrochemical characteristics were tuned via pyrolysis at different temperatures, including 600, 700, and 800 °C. Characterization findings corroborated the formation of Co–N–C moieties from Co-MOF, and XPS analyses indicated that 700 °C was the optimal temperature for achieving a high density of Co–N–C moieties. The optimized Co-MOF-700 sample displayed remarkable HER and OER performance in terms of lower overpotentials of 75 mV and 370 mV as well as small Tafel slopes of 118 mV/dec and 79 mV/dec, respectively. Furthermore, at a current density of 1 A/g, the Co-MOF-700 sample had a specific capacitance of 210 F/g. The enhanced electrochemical properties of Co-MOF-700C as compared to other samples can be attributed to the availability of a high density of Co–N–C sites for catalytic reaction and its porous architecture. This study will expand the knowledge of how compositional and morphological changes in MOFs affect their utility in energy conversion and storage applications.  相似文献   

11.
Among the cutting-edge materials for catalysis, metal-organic frameworks (MOFs) have become popular. The application has gradually shifted from organic synthesis to electrocatalysis in recent years. MOFs based on various transitions metals have exhibited excellent performance for electrocatalysis. The oxygen evolution reaction (OER) is an essential process for electrocatalysis, developing efficient OER electrocatalysts is challenging. Herein, a new model design is presented based on MOFs. By establishing the proper link between these modules, researchers may correctly and effectively synthesize hollow nanostructured MOFs, electrically conducting MOFs, hierarchically porous MOFs, functionalized MOFs and two-dimensional MOFs. The difficulties and potential of MOF-based catalysts for OER research are finally highlighted. Ultimately, the modular design concept examined in this study might be a useful tool for examining the relationships between structure and activity and accelerating the design of multi-component electrocatalysts on supply.  相似文献   

12.
Carboxylate-based metal-organic frameworks (MOFs) have emerged as promising electrocatalyst candidates for the water splitting and metal-air batteries. Hierarchical porous structure and redox-active metal centers with unsaturated coordination sites in MOFs facilitate the enhanced catalytic activity of oxygen evolution reaction (OER). Herein, uniform hollow structured Fe-free bi-metal (Co, Ni) MOF-74 nanoprisms are successfully synthesized using a solvothermal method and (Co1Ni1)3(OH)(CH3COO)5 as the sacrificial templates, where Co and Ni are the metal nodes and 2,5-dihydroxyterephthalic acid (H4DOBDC) serves as the organic ligand. At an overpotential of 300 mV, CoNi MOF-74 shows a high electrocatalytic activity towards OER in 0.1 M KOH, where the current density is 10 mA cm?2 and the Tafel slope is 65.6 mV dec?1. Meanwhile, CoNi MOF-74 is durable that sustains in alkaline for 100 h with 83.25% retention of current density. The improved catalytic activity can be associated with the in-situ generated amorphous Ni–Co (oxy)hydroxide, as well as the electron transfer from Ni2+ to Co2+. This work elucidates the potential application of MOF materials as efficient electrocatalysts for OER.  相似文献   

13.
Developing catalysts based on transition metal-based materials for oxygen evolution reaction (OER), which are cheap and efficient, is one of the keys to increase the rate of electrolysis of water to produce hydrogen. Herein, we successfully synthesize iron hydr(oxy)oxide nano-arrays on carbon cloth (FeOOH@CC), and then metallic nickel is electrodeposited on its surface to fabricate FeOOH/Ni heterojunction nanoarrays. Notably, the optimal FeOOH/Ni heterojunction nanoarrays catalyst shows high electrocatalytic performance toward OER with a small overpotential of 257.8 mV at 50 mA cm−2, a Tafel slope of 30.8 mV dec−1 and outstanding long-term stability in alkaline media. The superior OER performance could be ascribed to the introducing of metallic nickel. The nickel in-situ grows on the surface of FeOOH, which not only can improve the conductivity of FeOOH, but also cooperate with FeOOH to form the FeOOH/Ni heterogeneous interfaces for further enhancing OER electrocatalytic activities. This work provides a simple and efficient strategy of interface engineering to fabricate oxyhydroxide/metal heterojunction nanoarrays as high-efficiency OER catalysts.  相似文献   

14.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

15.
Layered Ni(OH)2 materials are cheap and efficient electrocatalyst for water splitting. However, pristine Ni(OH)2 materials usually show poor activity due to the low activity sites and poor conductivity in electrochemical reactions. Herein, layered Ni(OH)2 nanosheets are grown on the porous Mo2N particles for improved interfacial active sites and enhanced conductivity in the oxygen evolution reaction (OER). The OER overpotential of the optimized Mo2N/Ni(OH)2 composite material is distinctly reduced compared with pristine Ni(OH)2. In addition, the optimized Mo2N/Ni(OH)2 composite material exhibits favorable durability in alkaline electrolyte. Further electrochemical investigation reveals that the Mo2N/Ni(OH)2 composite materials produce increased charge transfer capability and electrochemical active surface area. Theoretical calculation study demonstrates that a redistribution of electron occurred at the interface of Ni(OH)2 and Mo2N, which results in the decrease of energy barrier for the adsorption of OER reactive intermediates at the interfacial atoms. The enhanced performance of OER is thus mainly come from the constructed interface between layered Ni(OH)2 and porous Mo2N. This work gives a feasible method to develop cheap and efficient electrocatalysts for water splitting.  相似文献   

16.
The development of low-cost electrochemical catalytic nanomaterials for efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through structural and composition control is a great challenge. Herein, a 3D hybrid structure is designed by an in-situ approach for growing 2D leaf-like nanosheet arrays on 1D electrospun nanofibers. The resultant catalysts composed of Cr-doped Co nanoparticle decorated N-doped carbon nanosheet and carbon nanofiber are synthesized by subsequent Cr3+ impregnation and heat treatment. The excellent properties of the as-prepared cathode benefit from the novel establishment of the 3D structure and the regulating mechanism of the electron density of Co after Cr doping, which simultaneously increases the mass and charge transfer process during the catalytic reaction. Consequently, Cr0.10-Co@NC exhibits excellent catalytic performance for the ORR (with a half-wave potential of 0.84 V) and OER (with an overpotential of 370 mV). When used in a homemade ZAB for evaluating their practical reversible performance, the device exhibits a higher open-circuit voltage (1.45 V) and a smaller potential gap (0.73 V) with excellent cycle durability of 110 h. This work offers a well-designed structure and development for synthesizing efficient and durable electrocatalysts in electrochemical energy conversion technologies.  相似文献   

17.
The development of inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still remained a challenge in wide range of renewable energy technologies. Herein, biomass-derived nitrogen self-doped porous carbon nanosheets (NPCNS) are produced by a facile and green pyrolysis of Euonymus japonicus leaves at controlled temperature and then the nitric acid pickling was carried out to remove the excess metal ingredients. The obtained NPCNS exhibits a hierarchically porous distribution, high BET surface area and uniform nitrogen doping. Electrochemical measurements show that the NPCNS possess a high electrocatalytic activity for both ORR and OER. Among these NPCNS catalysts, the sample carbonized at 900 °C (NPCNS-900) with the highest concentration of pyridinic nitrogen shows the best ORR and OER activity. According to our DFT calculations, the high content of pyridinic nitrogen with the moderate O and OH adsorption energies among the three types of nitrogen should be the critical factor for the efficient catalytic performance of NPCNS-900 toward ORR and OER. This work demonstrates that the facile prepared NPCNS-900 is a potential candidate material with excellent performance in electrocatalytic applications such as fuel cells or metal-air batteries.  相似文献   

18.
The exploration of electrocatalysts with high oxygen evolution reaction (OER) activity is highly desirable and remains a significant challenge. Transition metal carbides (TMCs) have been investigated as remarkable hydrogen evolution reaction (HER) electrocatalysts but few used as oxygen evolution reaction (OER) electrocatalysts. Herein, a Co doped Ni3C/Ni uniformly dispersed in a graphitic carbon matrix was prepared by pyrolysis of a metal organic framework (Co/Ni-MOF) under a flow of Ar/H2 at 350 °C, and Ni3C/Ni@C was also prepared for comparison. The various characterization techniques confirmed the successful preparation of the heteroatom doped TMCs-based catalysts by pyrolysis of MOFs. Co doped Ni3C/Ni@C exhibited superior electrocatalytic properties for OER. For example, Co–Ni3C/Ni@C depicts a lower overpotential and smaller Tafel slope than Ni3C/Ni@C and IrO2 during the OER in 1 M KOH solution, additionally, it shows a higher active surface area than Ni3C/Ni@C. The outstanding electrocatalytic performance of Co-doped Ni3C/Ni@C in the OER was mainly ascribed to the synergistic effect of the Co and Ni3C/Ni active sites.  相似文献   

19.
Electrocatalytic water splitting is an emerging technology for the development of maintainable hydrogen energy. It remains challenging to manufacture a stable, efficient, and cost-effective electrocatalyst that can conquer the slow reaction kinetics of water electrolysis. Herein, A metal-organic framework (MOF) based material is manufactured and productively catalyze the oxygen evolution reaction (OER). The introduction of elemental nickel enhances the catalytic activity of Co-FcDA. The results show that single Ni was well doped in the CoNi-FcDA catalysts and the doping of Ni has a great influence on the OER activity of CoNi-FcDA catalysts. CoNi-FcDA displayed a low overpotential of 241 mV to arrive at the benchmark current density (10 mA cm?2) with a remarkably small Tafel slope of 78.63 mV dec?1. It surpassed the state-of-the-art electrocatalyst for OER, that is, RuO2 (260 mV and 97.26 mV dec?1) in efficiency as well as instability. Density functional theory (DFT) calculations show that suitable Ni doping at the same time can increase the density of states of the Fermi level, resulting in excellent charge density and low intermediate adsorption energy. These discoveries provide a practical route for designing 2D polymetallic nanosheets to optimize catalytic OER performance.  相似文献   

20.
The transition metal phosphates are earth-abundant minerals that have been shown to perform well in electrocatalytic water splitting, whereas these catalysts still tend to have excessively high overpotentials and slow kinetics in HER and OER processes. In the present work, hybrid catalysts consisting of Pt quantum dots doped NiP (NiP-Pt) nano-embroidery spheres and Co(OH)2 nanosheets were successfully prepared by two-step electrodeposition method. The excellent catalytic performance of the catalyst relies principally on the synergistic interaction between NiP and Pt quantum dots. Additionally, the NiP-Pt exhibits strong electronic interactions at the interface with Co(OH)2. Consequently, the catalyst has a strong catalytic performance in terms of HER and OER catalytic performance. In terms of HER, an overpotential of only 40 mV is required when the current density reaches 10 mA cm?2, corresponding to a Tafel slope of 49.85 mV·dec?1. At the same time, the catalyst also performs well at OER, with a current density of 10 mA cm?2 at an overpotential of 186 mV and a Tafel slope of 53.049 mV·dec?1 much less than most electrocatalysts. This study involving electrodeposition and doping of quantum dots provides a new idea for the efficient synthesis of fundamental HER and OER bifunctional catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号