首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在分析有机相变材料的分类和特点的基础上,介绍了目前有机相变材料的制备方法和手段,从建筑节能材料和建筑蓄热构件两方面综述了近期国内外有机相变材料建筑节能应用的研究现状以及有机相变材料导热系数的改善方法,展望了其在建筑节能领域的应用和开发前景.  相似文献   

2.
The development of energy-efficient building envelopes has been an ongoing effort in many countries owing to the pressing need to achieve energy independence. In this study numerical optimization techniques and finite element analysis provide the means to find a compromise point between adding phase-change materials (PCMs) to a concrete wall, the energy savings and the wall's structural capacity. The primary objective is to minimize the overall lifetime cost of a wall by understanding the implications of PCM layer thickness, material properties and position in the wall on the overall energy consumption. While it is difficult to manually configure a typical wall for the lowest total cost, the developed computational framework provides an automated tool for searching for the best design. The results show that successful designs can be obtained where material and energy costs can be minimized through a judicious combination of existing building materials with thermal energy storage materials.  相似文献   

3.
In internal curing, pre-wetted lightweight aggregates (LWA) serve as internal reservoirs to supply the extra water needed by the cementitious and pozzolanic components of the concrete during their hydration processes. Due to their porous nature and reasonably high absorption capacity, the LWA can also be filled with other materials, such as phase change materials (PCMs). In this paper, three potential applications of PCM-filled LWA in concrete technology are presented. In addition to the previously explored application of increasing the energy storage capacity of concrete in residential and commercial construction by using a PCM with a transition temperature near room temperature, applications for higher and lower temperature PCMs also exist. In the former case, a PCM can be used to reduce the temperature rise (and subsequent rate of temperature decrease) of a large concrete section during (semi)adiabatic curing, to minimize thermal cracking, etc. In the latter case, a PCM can perhaps reduce the number or intensity of freeze/thaw cycles experienced by a bridge deck or other concrete exposed to a winter environment. In this paper, these latter two applications are preliminarily explored from both experimental and modeling viewpoints.  相似文献   

4.
This paper gives a comprehensive review on recent developments and the previous research studies on cold thermal energy storage using phase change materials (PCM). Such commercially available PCMs having the potential to be used as material for cold energy storage are categorised and listed with their melting point and latent heat of fusion. Also techniques for improving the thermo-physical properties of PCM such as heat transfer enhancement, encapsulation, inclusion of nanostructures and shape stabilization are reviewed. The effect of stability due to the corrosion of construction materials is also reported. Finally, different applications where the PCM can be employed for cold energy storage such as free cooling of building, air-conditioning, refrigerated trucks and cold packing are discussed.  相似文献   

5.
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m?1 K?1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m?1 K?1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.  相似文献   

6.
以石蜡作为相变物质、二氧化钛(TiO_2)作为基体材料,添加少量活性炭提高其热导率,通过微乳液法制备出新型石蜡/TiO_2/活性炭复合相变材料。利用XRD,SEM,TGA,DSC对材料的组成、形貌和性质分别进行表征,并对材料相变过程中的形状稳定性进行测试。结果表明:石蜡被TiO_2有效封装,保证了材料的定形相变特征;此外该复合材料还表现出超疏水性质。这些多功能特性将使其作为多功能涂料或其他添加剂在节能建筑中具有重要的应用价值。  相似文献   

7.
Recently,graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity.However,the pore size of GF is as large as hundreds of micrometers,resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls.In this study,a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks.The HGF is then used to prepare a paraffin wax (PW)-based composite PCM.The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW,respectively.The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM,negligible change in the phase-change temperature,a high thermal energy storage density that is 95% of pure PW,good thermal reliability,and chemical stability with cycling for 100 times.More importantly,PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to-thermal energy conversion and storage efficiency,indicating its great potential for applications in solar-energy utilization and storage.  相似文献   

8.
以硬脂酸丁酯为囊芯,密胺树脂(MF)和聚酯树脂(PET)为囊壁,合成了两种具有相变储热功能的胶囊.采用扫描电子显微镜(SEM)观察胶囊的形貌,差示扫描量热仪(DSC)研究胶囊的储热性能,发现MF/硬脂酸丁酯微胶囊表面粗糙,储能效果明显,稳定性好.利用MF/硬脂酸丁酯微胶囊制备了具有相变储能功能的建筑材料,微胶囊在水泥和...  相似文献   

9.
This paper employs a numerical simulation strategy to elucidate the influence of phase change materials (PCMs) on the thermal response of concrete pavements. Simulations of both the early- and late-age response of concrete pavements containing microencapsulated PCMs, with considerations of mixture proportions, PCM types, and structural and environmental boundary conditions, are carried out. The latent-heat response of PCMs is explicitly integrated into the model. The early-age simulations show significant reductions in peak hydration temperature and the heating/cooling rates when PCMs, either as a partial replacement of the cement paste or fine aggregates, are incorporated in concrete, resulting in reduced cracking probabilities. Simulations on mature pavements also indicate temperature and curling stress reductions when appropriate PCMs are used. PCM type(s) and dosage, depending on the imposed external temperature regimen, can be chosen based on the model to reduce the magnitude of critical stresses at both early- and late ages. The numerical model thus enables engineers and designers rationally design crack-resistant concrete pavements.  相似文献   

10.
相变材料(Phase change material,PCM)在建筑围护结构中的应用是一种改善室内热环境和居住舒适度的有效方法。为探索相变材料在夏热冬冷地区应用的节能潜力,对比研究了不同相变材料应用方法的节能效果,以能源使用强度(Energy use intensity,EUI)评价不同应用方法的建筑性能,旨在找出最优的应用方法。所用的相变材料以高密度聚乙烯球封装,并嵌入在XPS保温板中,形成XPSPCM板。研究结果表明:在制冷季,将XPSPCM板安装在建筑物墙体内表面时的EUI比其装在建筑物墙体外表面时降低了0.27~0.66kWh/m2,采暖季的降低幅度为0.68~0.88kWh/m2。综合考虑全年工况时,当XPSPCM板安装至建筑物墙体靠近内表面时EUI值最小。以EUI雷达图对比XPSPCM板集中于建筑不同朝向的应用效果,结果显示对于熔点为25℃的相变材料,相变材料集中布置于西向外墙时时建筑能耗最低。  相似文献   

11.
杨晋  殷勇高 《制冷学报》2022,43(3):37-44
本文综述了空调用相变蓄冷材料的国内外研究进展,简要介绍了相变蓄冷材料的性能要求和基本分类,总结了已有相变蓄冷材料存在的不足,并指出了优化性能的方法,特别是改善无机类材料的过冷、相分离,有机类材料的导热性能差等问题。对比了无机和有机两类材料在相变蓄冷中的优劣,并对今后空调蓄冷用相变材料的发展方向提出了建议。本文侧重强调满足空调蓄冷温区的材料,并针对典型材料展开深入调研和评述,为更好的改善空调蓄冷用相变材料的性能和推动其实际应用提供依据。  相似文献   

12.
相变墙是含有相变建筑材料的新型墙体。综述了常用的3类相变材料(有机材料、无机材料和复合材料)的研究现状以及与混凝土墙体、石膏板、水泥沙浆等建筑材料的融合形式,并探讨了相变墙体材料的研究和发展趋势。从现有研究情况来看,单一物质很难满足各方面的要求,因而复合相变材料将是未来的主要研究和发展方向,尤其是定形相变材料,其可节省封装费用,技术经济性更好。相变材料与建筑基材的相容性、稳定性和耐久性的相关研究还有待深入。  相似文献   

13.
In order to come to a sustainable built environment the construction industry requires new energy saving concepts. One concept is to use Phase Change Materials (PCM), which have the ability to absorb and to release thermal energy at a specific temperature. This paper presents a set of experiments using different amounts of PCM in self-compacting concrete mixes. The study focuses on the direct mixing of micro-encapsulated PCM with concrete and its influence on the material properties. Therefore, the fresh concrete properties and the hardened properties are investigated. The hardened properties comprise strength tests and a thorough assessment of the thermal properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and increased heat capacity, which both significantly improve the thermal performance of concrete and therefore save energy. On the other hand a significant loss in strength and micro-structural analysis both indicate that a large part of the capsules is destroyed during the mixing process and releases its paraffin wax filling into the surrounding matrix. However, the compressive strength of our specimens still satisfies the demands of most structural applications.  相似文献   

14.
Temperature changes driven by hydration reactions and environmental loading are a leading cause of thermal cracking in restrained concrete elements. This work describes preliminary investigations on the use of microencapsulated phase change materials (PCMs) as a means to mitigate such thermal cracking. Special attention is paid to quantify aspects of: heat absorption and release, the development of unrestrained/restrained thermal stresses and strains and the mechanical properties including: compressive strength, elastic modulus and fracture behavior. First, PCMs incorporated in cementitious systems absorb and release heat, which scales as a function of their dosage and enthalpy of phase change. Second, for restrained and unrestrained conditions and for equal temperature change, the thermal deformation and stresses developed are noted to be similar to a plain cement system independent of the PCM dosage. However, PCM additions are noted to reduce the rate of deformation and stress development so long as the phase transition is active. Third, while the presence of PCMs does depress the compressive strength and elastic modulus (in increasing proportion with dosage), the fracture toughness is impacted to a lesser degree. While of a preliminary nature, the studies highlight a novel means of exploiting phase transitions to control thermal stress evolutions in restrained elements.  相似文献   

15.
This paper presents a novel method to quantitatively characterize the thermal performance of composite materials containing phase change materials (PCM) based on a figure of merit we termed the energy indicator. The method features (i) commonly used specimen geometry, (ii) straightforward experimental implementation, and (iii) sensitivity to relevant design parameters including PCM volume fraction, enthalpy of phase change, composite effective thermal conductivity, and specimen dimensions. The experimental method and the concept of energy indicator were demonstrated on PCM-mortar composites using various volume fractions of two commercial microencapsulated PCMs. This was supported by transient two-dimensional heat transfer simulations. The energy indicator was shown to increase linearly with increasing microencapsulated PCM volume fraction and latent heat of fusion and quadratically with the specimen radius. This figure of merit can be used to rapidly screen and select microencapsulated PCM composite materials for energy efficient buildings or crack-resistant concretes.  相似文献   

16.
相变储能材料的研究进展与应用   总被引:30,自引:6,他引:24  
陈爱英  汪学英  曹学增 《材料导报》2003,17(5):42-44,72
相变储能技术对于能源的开发和合理利用具有重要意义,在太阳能利用、工业余热回收等方面有着显著的优点。综述了相变材料的研究进展,讨论了固—液相变、固—固相变储能材料的特性及其应用。固—液相变材料一般可分为无机和有机两种类型,其中无机类储能材料主要为无机盐水合物,它具有较大的溶解热和导热系数,但易出现“过冷”和“相分离”现象;有机类储能材料虽然避免了上述缺陷,但其导热性较差、溶解热较低。固—固相变材料种类较少,其中以多元醇应用最为广泛。探讨了这方面研究的发展方向,展望了储能技术市场化应用的前景。  相似文献   

17.
Based on our previous study which tested the feasibility of protecting the healthy tissue around the cancerous tissue during cryosurgery by microencapsulated phase change materials (PCMs) with large latent heat and low thermal conductivity, uncertainties and sensitivities for thermal protection efficiency caused by the deviations of the PCM properties’ values, the PCMs concentration and the distance between the PCMs domain and the tumor domain were further investigated in this study. The preliminary results showed that the radius of the micro/nano PCM particle, the upper and lower phase transition temperatures of the PCM and the distance between the PCMs domain and the tumor domain should be accurately measured before performing thermal protection by PCMs during cryosurgery. Less than 20?% deviations of the heat capacities of solid and liquid PCM almost had no obvious influence on the thermal protection efficiency. The results obtained in this study will further help us to optimize the protection protocol by PCMs before performing cryosurgery.  相似文献   

18.
Uneven and insufficient encapsulation caused by surface tension between supporting and phase change materials (PCMs) can be theoretically avoided if the encapsulation process co-occurs with the formation of supporting materials in the same environment. Herein, for the first time, a one-pot one-step (OPOS) protocol is developed for synthesizing TiO2-supported PCM composite, in which porous TiO2 is formed in situ in the solvent of melted PCMs and directly produces the desired thermal energy storage materials with the completion of the reaction. The preparation features straightforward operation and high environmental metrics with no emission, requires only stirring and heating without the addition of organic solvent or catalyst. Moreover, the preparation process can be easily scaled-up at the laboratory. Because of the OPOS protocol and porous TiO2 inside, the as-obtained PCM composite possesses a 66.5% encapsulation ratio and 166.8% thermal conductivity enhancement compared to pristine unsupported PCMs, with 94.7% light-to-thermal conversion efficiency and promising bacterial inhibition activity without any leakage.  相似文献   

19.
The masonry walls used in building construction in Kuwait are non-load bearing. Traditionally, normalweight concrete blocks have been used throughout the region. However, with the enforcement of the Kuwaiti energy conservation code, autoclaved aerated-concrete blocks were introduced in 1985 as an efficient masonry material that can provide the necessary thermal insulation properties without the use of specific thermal insulation materials. This paper discusses the influence of material properties and specific construction practices on the performance of aerated-concrete-block walls. The provision of a partial movement joint through the use of sand-cement mortar, in place of higher strength epoxy glue mortar in the construction of wall and column intersections, reduced cracking in the immediate vicinity of the intersections. Studies are ongoing to recommend more effective measures for allowing greater movement at the wall and column intersections, thereby eliminating wall cracking due to restraint of movement.  相似文献   

20.
Two kinds of carbon aerogels, graphene aerogels (GA) and carbon nanotubes-graphene aerogels (CGA), were prepared by modified hydrothermal method. The form-stable phase change materials (PCMs) were fabricated by adsorbing paraffin into carbon aerogels. Morphology, structure, form stability and thermal property were characterized by scanning electron microscope (SEM), in situ X-ray diffraction (in situ XRD) and differential scanning calorimeter (DSC). The results showed that GA presented wrinkled surface textures with curling edges, and carbon nanotubes (CNTs) were interspersed or attached to GA sheets. The phase transition temperature and the phase change enthalpy of the GA/paraffin PCM composite were 48.7 °C and 223.2 J/g, respectively. Thermal and mechanical properties of PCM composites achieved a qualitative leap with the adding of carbon aerogels. The PCM composites had a thermal conductivity of about 2.182 W/m K at the carbon aerogels loading fraction of 2 wt%. The form-stable PCM composites with high thermal conductivity and high enthalpy could be promising for thermal energy storage applications in construction field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号