首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this study, mesoporous silica nanoparticles (MSNs) were embedded into the hydrophilic poly(vinyl alcohol) (PVA) nanofibrous mats to achieve sustained release of water soluble drug from hydrophilic nanofibrous mats. MSNs were successfully prepared based on a sol–gel method. Water soluble drug naproxen sodium was then loaded into the mesopores of the MSNs, and different amounts of the drug-loaded MSNs were further incorporated into the fibers by the electrospinning process. Morphology of the nanofibrous mats was investigated, and it was found that all the fibers exhibited fibrous structure. Interestingly, lots of protrusions could be observed from the scanning electron microscopy images with high magnification, and numbers of the protrusions increased with the increasing of loading ratios of the MSNs from 5 to 15%. In addition, the wetting behaviors of the nanofibrous mats were also measured, and the water contact angles of all the mats were measured to be 0°. Finally, the drug release results indicated that all the PVA/MSNs composite nanofibrous mats showed an obviously prolonged drug release. The optimal loading ratio of the MSNs in the nanofibers was 10% due to the slowest drug release rate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47922.  相似文献   

2.
Nanofibrous biocomposite scaffolds of chitosan (CS), PVA, and hydroxyapatite (HA) were prepared by electrospinning. The scaffolds were characterized by FTIR, SEM, TEM, and XRD techniques. Tensile testing was used for the characterization of mechanical properties. Mouse fibroblasts (L929) attachment and proliferation on the nanofibrous scaffold were investigated by MTT assay and SEM observation. FTIR, TEM, and XRD results showed the presence of nanoHA in the scaffolds. The scaffolds have porous nanofibrous morphology with random fibers in the range of 100–700 nm diameters. The CS/PVA (90/10) fibrous matrix (without HA) showed a tensile strength of 3.1 ± 0.2 MPa and a tensile modulus 10 ± 1 MPa with a strain at failure of 21.1 ± 0.6%. Increase the content of HA up to 2% increased the ultimate tensile strength and tensile modulus, but further increase HA up to 5–10% caused the decrease of tensile strength and tensile modulus. The attachment and growth of mouse fibroblast was on the surface of nanofibrous structure, and cells' morphology characteristics and viability were unaffected. A combination of nanofibrous CS/PVA and HA that mimics the nanoscale features of the extra cellular matrix could be promising for application as scaffolds for tissue regeneration, especially in low or nonload bearing areas. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
为了实现香芹酚(CAR)的缓释,减缓食品的氧化变质进程,以可降解聚合物明胶(GEL)和聚乙烯醇(PVA)为基材,CAR为抗氧化剂,采用静电纺丝法制备香芹酚/明胶/聚乙烯醇复合纤维膜(CAR/GEL/PVA纤维膜)。通过SEM、FTIR、XRD对纤维膜的结构进行表征,并测定了纤维膜的抗氧化活性、缓释性能和橄榄油的过氧化值;考察了CAR添加量(以溶液中GEL的质量为基准)对纤维膜结构和性能的影响。结果表明:随着CAR添加量的增加,纺丝溶液的黏度增加,电导率下降,所制备的纤维膜形貌由直径较小且分布均匀转变为直径较大且分布不均匀,从而影响纤维膜的力学性能、抗氧化性能和缓释效果。Ritger-peppas和Weibull模型能较好地拟合缓释过程,其相关系数接近于1,释放规律遵循Fickian扩散机制,且当CAR添加量为5%时,纤维膜的缓释效果最佳。高CAR添加量的CAR/GEL/PVA纤维膜能在油脂类食物中缓慢释放,具有较强的抗氧化活性。在48 h时,CAR添加量为20%的纤维膜的DPPH自由基清除率为82.4%,比未添加CAR纤维膜提升了50.4%,可以有效降低橄榄油的过氧化值。  相似文献   

4.
The main objective of this work was to prepare a tailor‐made electrospun nanofibrous samples based on poly(?‐caprolactone) (PCL) containing tetracycline hydrochloride (TC‐HCl) as a middle layer and poly(vinyl alcohol) (PVA) including phenytoin sodium (PHT‐Na) as lateral layers. The characterizations of the three‐layered electrospun samples were carried out by using SEM, ATR‐FTIR spectroscopy along with swelling/weight loss, UV–vis spectrophotometry as well as HPLC, antibacterial and MTT tests. The SEM micrograph images showed that the average diameter of PCL nanofibers was decreased from 243 ± 7 nm to 181 ± 5 nm by adding TC‐HCl. The hydrolytic degradation of PVA nanofibers in the exposure of phosphate buffer solution (PBS) was confirmed by ATR‐FTIR results in which a change at the intensity of the characteristic peak located at 3333 cm?1 corresponding to hydroxyl groups (? OH) was observed. The UV–vis outcomes revealed a sustained control release of TC‐HCl from the three‐layered nanofibrous samples (PVA/PCL/PVA) with an amount of about 43% compared to the PCL nanofibers which had an ultimate release of the drug about 79%. Furthermore, the HPLC chromatograms showed the released PHT‐Na from PVA nanofibers about 87%. Finally, the MTT assay along with the antibacterial evaluation exhibited that the surfaces of these electrospun three‐layered nanofibrous samples have no cytotoxicity as well as the controlled release of TC‐HCl from them enabled their prolonged use for preventing the bacterium growth such as S. aureus during 24‐h treatment time. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43309.  相似文献   

5.
The present study focused on the preparation of nanohydroxyapatite (nHA)-coated hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibrous scaffolds for bone tissue engineering application. The electrospun HEC/PVA scaffolds were mineralized via alternate soaking process. FESEM revealed that the nHA was formed uniformly over the nanofibers. The nHA mineralization enhanced the tensile strength and reduced the elongation at breakage of scaffolds. The wettability of the nanofibrous scaffolds was significantly improved. The in vitro biocompatibility of scaffolds was evaluated with human osteosarcoma cells. nHA-coated scaffolds had a favorable effect on the proliferation and differentiation of osteosarcoma cell and could be a potential candidate for bone regeneration.  相似文献   

6.
Chitosan/poly(vinyl alcohol) (PVA) nanofibrous mats were prepared by the electrospinning method. The morphology and structure of electrospun nanofibers were investigated by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. SEM images showed that the uniform and bead-free fibers were obtained at concentrations greater than 8 wt%. Chitosan/PVA mats were irradiated with different doses (50–200 kGy) of 60Co gamma rays. The effect of irradiation dose on the mechanical and thermal properties of these films was also investigated. Increasing the irradiation dose led to a decrease in tensile strength. FT-IR and DSC demonstrated that there were strong intermolecular hydrogen bonds between the chitosan and PVA molecules.  相似文献   

7.
以壳聚糖(CS)为基材,使用静电纺丝的方法制备了搭载壳寡糖(CHOS)的CS/聚乙烯醇(PVA)/CHOS纳米纤维膜,并对纳米纤维膜的微观形貌、结构、抑菌性、亲水性以及溶解性能进行了研究。研究发现:CS/PVA/CHOS纳米纤维膜具备均匀密致的微观形貌;FT-IR测试表明,CHOS以物理混合的形式分散在CS/PVA/CHOS纳米纤维膜中;XRD测试表明,CHOS的加入改变了纳米纤维膜的结晶性,促进了各组分之间的相容性;水接触角测试表明纳米纤维膜具备良好的亲水性,在m(CS):m(PVA):m(CHOS)=20:80:10时,CS/PVA/CHOS纳米纤维膜的接触角相比于m(CS):m(PVA)=20:80的CS/PVA纳米纤维膜由59.8°下降到37.5°;抑菌性能和溶解性能测试表明,m(CS):m(PVA):m(CHOS)=20:80:10时的CS/PVA/CHOS纳米纤维膜相比于未搭载CHOS的CS/PVA纳米纤维膜,抑菌性提升了38.9%,溶解率提升了38.6%。  相似文献   

8.
Bin Ding  Eiji Kimura  Shiro Fujita 《Polymer》2004,45(6):1895-1902
A series of blend biodegradable nanofibrous mats comprising poly(vinyl alcohol) (PVA) and cellulose acetate (CA) were prepared via multi-jet electrospinning. A relative high voltage (20 kV) was used to supply the power for multi-jet electrospinning. The weight ratio of PVA/CA in blend nanofibrous mats can be controlled by changing the number ratio of jets of PVA/CA. Moreover, the real composition of PVA and CA in blend nanofibrous mats was determined by immersing the blend nanofibrous mats into water to remove the PVA component. Morphology, dispersibility, and mechanical properties of blend nanofibrous mats were examined by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (WAXD), and tensile test. The results showed that the blend nanofibrous mats have good dispersibility. Additionally, the mechanical properties of blend nanofibrous mats were largely influenced by the weight ratio of PVA/CA in blends. Potential applications of the blend nanofibrous mats include filters and biomedical materials.  相似文献   

9.
Nanofibrous biocomposite scaffolds of poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by using electrospinning method. The microstructure, crystallinity, and morphology of the scaffolds were characterized through X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The mechanical properties were investigated by tensile testing. Moreover, Mouse Osteoblastic Cells (MC3T3‐E1) attachment and proliferation on the nanofibrous scaffolds were investigated by MTT [3‐(4,5‐dimeth‐ylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide] assay, SEM observation and fluorescence staining. XRD and FTIR results verify the presence of GO in the scaffolds. SEM images show the three‐dimensional porous fibrous morphology, and the average diameter of the composite fibers decreases with increasing the content of GO. The mechanical properties of the scaffolds are altered by changing the content of GO as well. The tensile strength and elasticity modulus increase when the content of GO is lower than 1 wt %, but decrease when GO is up to 3 and 5 wt %. MC3T3‐E1 cells attach and grow on the surfaces of the scaffolds, and the adding of GO do not affect the cells' viability. Also, MC3T3‐E1 cells are likely to spread on the PVA/GO composite scaffolds. Above all, these unique features of the PVA/GO nanofibrous scaffolds prepared by electrospinning would open up a wide variety of future applications in bone tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
本文研究了交联剂对淀粉/壳聚糖/聚乙烯醇/明胶共混膜的透光性、透气性、吸水性及保水性和力学性能的影响。结果表明:共混膜的性能与交联剂有较大关系。在交联剂用量在0%~5%的范围内,随着交联剂用量的增加,共混膜的扯断伸长率、吸水性和保水性随之降低,共混膜的拉伸强度、撕裂强度、透水气性和透光性先增加后减小。  相似文献   

11.
Abstract

Crosslinked chitosan/poly(vinyl alcohol) nanofibres were successfully prepared via electrospinning technique with heat mediated chemical crosslinking. The structure, morphology and mechanical properties of nanofibres were characterised by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and tensile tester respectively. The SEM images demonstrated that crosslinked nanofibres exhibited a smooth surface and regular morphology. With increasing PVA, swelling of nanofabric increased. The mechanical properties of the fibre mats, as determined in a static tensile test, improved with increasing PVA composition owing to strong interaction between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. The crosslinked chitosan/poly (vinyl alcohol) nanofibrous mats have potential use as artificial skin and other tissue scaffold materials.  相似文献   

12.
Cartilage tissue engineering is one of the interesting approaches used for repairing cartilage injuries. This study reports the fabrication of polyvinyl alcohol/alginate sulfate (PVA/ALG-S) nanofibrous mats as a functional support for chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs). The PVA/ALG-S nanofibers were obtained through electrospinning of PVA solutions containing 10, 20, and 30 wt% of ALG-S. The appearance of a band at 833 cm−1 assigned to the symmetrical C O S vibration associated to a C O SO3 group confirmed the presence of ALG-S in nanofibrous mat. The SEM images illustrated the bead-free and smooth morphology of PVA/ALG-S nanofibers with a mean diameter of 185 ± 0.06 nm. The MTT assay of the hBM-MSCs seeded on scaffolds indicated the appropriate cytocompatibility of nanofibrous PVA/ALG-S scaffolds. Furthermore, the appropriate attachment and spreading of the hBM-MSCs based on SEM images, and their differentiation to the chondrocyte-like cells accompanied by a decrease in cell growth on MTT analysis and more color absorption in alician blue staining indicated the effective role of alginate sulfate on cell differentiation. Finally, the expression of Type II collagen by RT-PCR and immunocytochemistry analyses revealed the chondrogenic differentiation of hBM-MSCs on alginate sulfate nanofibers.  相似文献   

13.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

14.
In this work, chitin flakes were deacetylated with 50% (w/v) sodium hydroxide under nitrogen atmosphere at 120 °C for 80 min to obtain chitosan. The chitosan produced was characterized for degree of deacetylation (DD) and molecular weight. Chitosan with the DD of 78–80% was reproducibly obtained. Molecular weight showed an inverse relationship with concentration of NaOH. Chitosan nanofibrous membrane was prepared via the electrospinning of chitosan/polyvinyl alcohol (CH/PVA) aqueous solutions with varying blend compositions. The characteristics of CH/PVA nanofibrous membranes were studied as a function of viscosity of solution and applied voltage. A uniform nanofibrous membrane of average fibre diameter of 80–300 nm was obtained with blend of 2% (w/v) chitosan solution in 1% (v/v) acetic acid and 5% (w/v) PVA in distilled water in the electric field of 20–25 kV with varying proportion of CH/PVA. With the CH/PVA mass ratios; 40/60 to 10/90, electrospinning of nanofibres could be done. The electrospun nanofibrous membrane was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA). SEM images showed that the morphology and diameter of the nanofibres were mainly affected by the weight ratio of CH/PVA. XRD and FTIR confirmed the strong intermolecular hydrogen bonding between the molecules of Chitosan and PVA.  相似文献   

15.
In this study, electrospun biocompatible nanofibers with random orientation were prepared by physically blending poly(vinyl alcohol)‐stilbazol quaternized (PVA‐SbQ) with zein in acetic acid solution for wound healing. PVA‐SbQ was used as the foundation polymer as well as crosslinking agent, blended with zein to achieve desirable properties such as improved tensile strength, surface wettability, and in vitro degradable properties. Moreover, vaccarin drug was incorporated in situ into electrospun nanofibrous membranes for cell viability and cell attachment. The addition of vaccarin showed great effects on the morphology of nanofiber and enhanced cell viability and proliferation in comparison with composite nanofibers without drug. The presence of PVA‐SbQ, zein, and vaccarin drug in the nanofibrous membranes exhibited good compatibility, hydrophilicity, and biocompatibility and created a moist environment to have potential application for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42565.  相似文献   

16.
Gelatin (GEL) and poly (vinyl alcohol) (PVA)-based semi-interpenetrating polymer network (semi-IPN) hydrogels were prepared for cationic dye sorption. Chemically cross-linked copolymer of acrylamide/sodium acrylate (AAm/SA) with PVA and/or GEL were prepared by polymerization of aqueous solution of AAm, and SA using ammonium persulphate/N,N,N’,N’-tetramethylethylenediamine as redox initiating pair in presence of poly(ethylene glycol)diacrylate as cross-linker. FTIR analysis was used for structural characterization. Surface morphology was characterized by SEM. Methyl violet has been used in sorption studies. Water uptake, and dye sorption properties of the cross-linked polymeric systems were investigated as a function of chemical composition of the hydrogels.  相似文献   

17.
The main aim of the present investigation is synthesis of drug‐grafted poly(vinyl alcohol) (PVA) for sustainable drug release in order to avoid bulk release and unwanted side effects. Here, the PVA was structurally modified with five different drug molecules in DMSO medium at 85 °C under N2 atmosphere for 2 h. The structure of modified PVA was confirmed by FTIR and 1H NMR spectra and further it was characterized by TGA, DSC, and SEM. The tensile strength and % elongation for the structurally modified PVA were determined. The FTIR spectrum showed peaks corresponding to the C?O and C? S stretching due to the grafted drug molecules. The 1H NMR spectrum showed the acrylic CH2 proton signal of PVA around 1.6 ppm. The SEM showed different surface morphology for the structurally modified PVA. The mechanical properties of the structurally modified PVA was found to be reduced due to the presence of traces of solvent molecules and the breaking of inter‐ and intramolecular hydrogen bonding. The sustainable drug release through hydrolysis mechanism was tested at the pH of 7.3. Generally, the drug release followed the Korsmeyer–Peppas model with Fickian drug transportation mechanism except Furosemide (Fur)‐grafted PVA system at the pH of 7.3. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46620.  相似文献   

18.

Electrospun polymeric nanofibers as carriers for anticancer drugs have received a great deal of attention to treat tumor cells. This work was aimed to prepare an optimized nanofibrous sample based on poly(vinyl alcohol) (PVA)/chitosan (CS) blend, and then evaluate it containing 5-fluorouracil (5-FU) in terms of morphology, drug release, and cell culture. The electrospinning conditions to produce PVA/CS (50/50) blend nanofibers with an average diameter of approximately 150.8 nm were adjusted as follows: applied voltage 17 kV, needle tip to collector distance 60 cm, and flow rate 0.1 mL/h. The obtained results from Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) showed that there were no chemical interactions between the polymers and drug during the electrospinning process and the uniform morphology without beads. Moreover, to prolong 5-FU release from the blend nanofibers, three layered samples consisting of PVA/CS blend and poly (ε-caprolactone) (PCL) [PVA/CS-PCL 3-layers] were electrospun. On the other hand, by adding PCL in the PVA/CS blend nanofibers, the samples showed more hydrophobic property. Eventually, thiazolyl blue (MTT) assay along with NIH 3T3 cells culture proved that the sample could kill more than 80% of the cells. This formulation could be a promising candidate for cancer therapy potentially.

  相似文献   

19.
Chitosan/gelatin-based nanofibers display excellent biological performance in tissue engineering because of their biocompatible composition and nanofibrous structure with a high surface-to-volume ratio mimicking the native extracellular matrix. In this study, to save time and cost of experiments, a response surface methodology based on Box–Behnken design (BBD) is developed to predict the mean diameter of (chitosan:gelatin)/poly(vinyl alcohol) (PVA) nanofibers in three volume ratios of chitosan:gelatin by considering PVA percentage, applied voltage, and flow rate as input variables. The morphology and chemical composition of nanofibers are investigated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The optimum conditions to yield the minimum diameter of nanofibers with chitosan:gelatin ratios of 25:75, 50:50, and 75:25 are found and result in 165, 121, and 92 nm, respectively, which show good accordance with BBD estimated results. The tensile testing indicates that nanofibers containing higher ratio of chitosan:gelatin result in higher tensile stress and lower toughness and tensile strain. The water contact angle analysis (WCA) shows the appropriate hydrophilicity of crosslinked nanofibers. The MTT assay shows excellent cell viability and cell attachment of nanofibers for mouse fibroblast (L929) cells. The results indicate that optimum nanofibers are potent candidates for wound healing applications.  相似文献   

20.
Electrospinning, self‐assembly, and phase separation are some of the techniques available for the synthesis of nanofibers. Of these techniques, electrospinning is a simple and versatile method for generating ultrafine fibers from a wide variety of polymers and polymer blends. Poly L ‐lactide (PLLA) and Poly (vinyl alcohol) (PVA) are biodegradable and biocompatible polymers which are mainly used for biomedical applications. Nanofibrous membranes with 1:9 ratio of PLLA to PVA (8 to 10 wt % and 10 wt %) were fabricated by electrospinning. The percentage porosity and contact angle of PVA in the PLLA‐PVA nanofibrous mat increased from 80 to 83% and from 39 ± 3° to 55 ± 3°, respectively. The water uptake percentage of PVA nanofibers decreased from 190 to 125% on the addition of PLLA to PVA in the PLLA‐PVA nanofibrous mat. The nanofiber morphology, structure and crystallinity were studied by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray diffraction (XRD), respectively. The thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetery (DSC). The biocompatibility studies of PLLA‐PVA blend were performed using fibroblast cells (NIH 3T3) by MTT assay method. The release of Curcumin (0.5, 1.0, and 1.5 wt %) from PLLA‐PVA blend was found to be ~ 78, 80, and 80%, respectively, in 4 days. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号