首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《数学季刊》2016,(4):399-405
A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a rainbow u-v geodesic, then G is strong rainbow vertex-connected. The minimum number k for which there exists a k-vertex-coloring of G that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of G, denoted by srvc(G). Observe that rvc(G) ≤ srvc(G) for any nontrivial connected graph G. In this paper, for a Ladder Ln, we determine the exact value of srvc(Ln) for n even. For n odd, upper and lower bounds of srvc(Ln) are obtained. We also give upper and lower bounds of the (strong) rainbow vertex-connection number of M¨obius Ladder.  相似文献   

2.
An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. A vertex colored graph G is vertex rainbow connected if any two vertices are connected by a path whose internal vertices have distinct colors. The vertex rainbow connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G vertex rainbow connected. In 2011, Kemnitz and Schiermeyer considered graphs with rc(G) = 2.We investigate graphs with rvc(G) = 2. First, we prove that rvc(G) 2 if |E(G)|≥n-22 + 2, and the bound is sharp. Denote by s(n, 2) the minimum number such that, for each graph G of order n, we have rvc(G) 2provided |E(G)|≥s(n, 2). It is proved that s(n, 2) = n-22 + 2. Next, we characterize the vertex rainbow connection numbers of graphs G with |V(G)| = n, diam(G)≥3 and clique number ω(G) = n- s for 1≤s≤4.  相似文献   

3.
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S of G such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S; whereas when x and y are adjacent, S + x or S + y is rainbow and x and y belong to different components of(G-xy)-S. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertexdisconnected. In this paper, we characterize all graphs of order n with rainbow vertex-disconnection number k for k ∈ {1, 2, n}, and determine the rainbow vertex-disconnection numbers of some special graphs. Moreover, we study the extremal problems on the number of edges of a connected graph G with order n and rvd(G) = k for given integers k and n with 1 ≤ k ≤ n.  相似文献   

4.
For a proper edge coloring c of a graph G,if the sets of colors of adjacent vertices are distinct,the edge coloring c is called an adjacent strong edge coloring of G.Let c i be the number of edges colored by i.If |c i c j | ≤ 1 for any two colors i and j,then c is an equitable edge coloring of G.The coloring c is an equitable adjacent strong edge coloring of G if it is both adjacent strong edge coloring and equitable edge coloring.The least number of colors of such a coloring c is called the equitable adjacent strong chromatic index of G.In this paper,we determine the equitable adjacent strong chromatic index of the joins of paths and cycles.Precisely,we show that the equitable adjacent strong chromatic index of the joins of paths and cycles is equal to the maximum degree plus one or two.  相似文献   

5.
An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path,which contains a color used on exactly one of its edges.The conflict-free connection number of a connected graph G,denoted by cf c(G),is defined as the minimum number of colors that are required in order to make G conflict-free connected.In this paper,we investigate the relation between the conflict-free connection number and the independence number of a graph.We firstly show that cf c(G)≤α(G)for any connected graph G,and give an example to show that the bound is sharp.With this result,we prove that if T is a tree with?(T)≥(α(T)+2)/2,then cf c(T)=?(T).  相似文献   

6.
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors.The acyclic chromatic index of a graph G,denoted by a′(G),is the minimum number k such that there is an acyclic edge coloring using k colors.It is known that a′(G)≤16△for every graph G where △denotes the maximum degree of G.We prove that a′(G)13.8△for an arbitrary graph G.We also reduce the upper bounds of a′(G)to 9.8△and 9△with girth 5 and 7,respectively.  相似文献   

7.
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)~(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.  相似文献   

8.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

9.
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.  相似文献   

10.
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.  相似文献   

11.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

12.
A vertex x in a graph G strongly resolves a pair of vertices v, w if there exists a shortest x-w path containing v or a shortest x-v path containing w in G. A set of vertices S■V(G) is a strong resolving set of G if every pair of distinct vertices of G is strongly resolved by some vertex in S. The strong metric dimension of G, denoted by sdim(G), is the minimum cardinality over all strong resolving sets of G. For a connected graph G of order n≥2, we characterize G such that sdim(G) equals 1, n-1, or n-2, respectively. We give a Nordhaus-Gaddum-type result for the strong metric dimension of a graph and its complement: for a graph G and its complement G, each of order n≥4 and connected, we show that 2≤sdim(G)+sdim(G)≤2( n-2). It is readily seen that sdim(G)+sdim(G)=2 if and only if n=4; we show that, when G is a tree or a unicyclic graph, sdim(G)+sdim(G)=2(n 2) if and only if n=5 and G ~=G ~=C5, the cycle on five vertices. For connected graphs G and G of order n≥5, we show that 3≤sdim(G)+sdim(G)≤2(n-3) if G is a tree; we also show that 4≤sdim(G)+sdim(G)≤2(n-3) if G is a unicyclic graph of order n≥6. Furthermore, we characterize graphs G satisfying sdim(G)+sdim(G)=2(n-3) when G is a tree or a unicyclic graph.  相似文献   

13.
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, ···, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at~i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs.  相似文献   

14.
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u)≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by χ_(vt)~e(G) and is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph K_(7,n)(7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K_(7,n)(7 ≤ n ≤ 95) has been obtained.  相似文献   

15.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

16.
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.  相似文献   

17.
For integers k0,r0,a(k,r)-coloring of a graph G is a proper k-coloring of the vertices such that every vertex of degree d is adjacent to vertices with at least min{d,r}diferent colors.The r-hued chromatic number,denoted byχr(G),is the smallest integer k for which a graph G has a(k,r)-coloring.Define a graph G is r-normal,ifχr(G)=χ(G).In this paper,we present two sufcient conditions for a graph to be 3-normal,and the best upper bound of 3-hued chromatic number of a certain families of graphs.  相似文献   

18.
INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS   总被引:3,自引:0,他引:3  
It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for every independent set 7 which has the same parity as |V(G)|, G-I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The k-th power of G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G3 and T(G) (the total graph of G) are ID-factor-critical, and G4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D2 is ID-factor-critical.  相似文献   

19.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted Tc(G),is the minimum cardinality of a clique- transversal set in G.In this paper we present the bounds on the clique-transversal number for regular graphs and characterize the extremal graphs achieving the lower bound.Also,we give the sharp bounds on the clique-transversal number for claw-free cubic graphs and we characterize the extremal graphs achieving the lower bound.  相似文献   

20.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号