首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Let Pij and qij be positive numbers for ij, i, j = 1, …, n, and consider the set of matrix differential equations x′(t) = A(t) x(t) over all A(t), where aij(t) is piecewise continuous, aij(t) = ?∑ijaij(t), and pij ? aij(t) ? qij all t. A solution x is also to satisfy ∑i = 1nxi(0) = 1. Let Ct denote the set of all solutions, evaluated at t to equations described above. It is shown that Ct, the topological closure of Ct, is a compact convex set for each t. Further, the set valued function Ct, of t is continuous and limitt → ∞C?t = ∩ C?t.  相似文献   

2.
An anti-Hadamard matrix may be loosely defined as a real (0, 1) matrix which is invertible, but only just. Let A be an invertible (0, 1) matrix with eigenvalues λi, singular values σi, and inverse B = (bij). We are interested in the four closely related problems of finding λ(n) = minA, i|λi|, σ(n) = minA, iσi, χ(n) = maxA, i, j |bij|, and μ(n) = maxAΣijb2ij. Then A is an anti-Hadamard matrix if it attains μ(n). We show that λ(n), σ(n) are between (2n)?1(n4)?n2 and cn (2.274)?n, where c is a constant, c(2.274)n?χ(n)?2(n4)n2, and c(5.172)n?μ(n)?4n2 (n4)n. We also consider these problems when A is restricted to be a Toeplitz, triangular, circulant, or (+1, ?1) matrix. Besides the obvious application—to finding the most ill-conditioned (0, 1) matrices—there are connections with weighing designs, number theory, and geometry.  相似文献   

3.
Let x?Sn, the symmetric group on n symbols. Let θ? Aut(Sn) and let the automorphim order of x with respect to θ be defined by
γθ(x)=min{k:x xθ xθ2 ? xθk?1=1}
where is the image of x under θ. Let αg? Aut(Sn) denote conjugation by the element g?Sn. Let b(g; s, k : n) ≡ ∥{x ? Sn : kγαg(x)sk}∥ where s and k are positive integers and ab denotes a divides b. Further h(s, k : n) ≡ b(1; s, k : n), where 1 denotes the identity automorphim. If g?Sn let c = f(g, s) denote the number of symbols in g which are in cycles of length not dividing the integer s, and let gs denote the product of all cycles in g whose lengths do not divide s. Then gs moves c symbols. The main results proved are: (1) recursion: if n ? c + 1 and t = n ? c ? 1 then b(g; s, 1:n)=∑is b(g; s, 1:n?1)(ti?1(i?1)! (2) reduction: b(g; s, 1 : c)h(s, 1 : i) = b(g; s, 1 : i + c); (3) distribution: let D(θ, n) ≡ {(k, b) : k?Z+ and b = b(θ; 1, k : n) ≠ 0}; then D(θ, m) = D(φ, m) ∨ m ? N = N(θ, φ) iff θ is conjugate to φ; (4) evaluation: the number of cycles in gss of any given length is smaller than the smallest prime dividing s iff b(gs; s, 1 : c) = 1. If g = (12 … pm)t and skpm then b(g;s,k:pm) {0±1(mod p).  相似文献   

4.
In connection with the problem of finding the best projections of k-dimensional spaces embedded in n-dimensional spaces Hermann König asked: Given mR and nN, are there n×n matrices C=(cij), i, j=1,…,n, such that cii=m for all i, |cij|=1 for ij, and C2=(m2+n?1)In? König was especially interested in symmetric C, and we find some families of matrices satisfying this condition. We also find some families of matrices satisfying the less restrictive condition CCT=(m2+n?1)In.  相似文献   

5.
Let V(n) denote the n-dimensional vector space over the 2-element field. Let a(m, r) (respectively, c(m, r)) denote the smallest positive integer such that if n ? a(m, r) (respectively, n ? c(m, r)), and V(n) is arbitrarily partitioned into r classes Ci, 1 ? i ? r, then some class Ci must contain an m-dimensional affine (respectively, combinatorial) subspace of V(n). Upper bounds for the functions a(m, r) and c(m, r) are investigated, as are upper bounds for the corresponding “density functions” a(m, ?) and c(m, ?).  相似文献   

6.
For a stationary autoregressive model of order s, the partial autocorrelation coefficients of order j, j=0,1,2,…,s?1, are defined; the partial autocorrelation coefficient of order zero being the same as the autocorrelation coefficient of order one. Denoting these s parameters by ?1,π1,…,πs?1, it is shown that their sample images, namely r1,P1,…,Ps?1, are asymptotically independently normally distributed with means equal to the corresponding population values and asymptotic variances given by
var(r1)=(1 ? ?21)(1 ? π21?(1 ? π2s ?1)n,
var(Pj)=(1 ? π2j(1 ? π2j+1)?(1 ? π2s ?1)n
,
j=1,2,…,s?1,
where n is the size of the sample from the autoregressive process of order s. The partial correlogram of the model and application of the result are discussed.  相似文献   

7.
Using old results on the explicit calculation of determinants, formulae are given for the coefficients of P0(z) and P0(z)fi(z) ? Pi(z), where Pi(z) are polynomials of degree σ ? ρi (i=0,1,…,n), P0(z)fi(z) ? Pi(z) are power series in which the terms with zk, 0?k?σ, vanish (i=1,2,…,n), (ρ0,ρ1,…,ρn) is an (n+1)-tuple of nonnegative integers, σ=ρ0+ρ1+?+ρn, and {fi}ni=1 is the set of hypergeometric functions {1F1(1;ci;z)}ni=1(ci?Zz.drule;N, ci ? cj?Z) or {2F0(ai,1;z)}ni=1(ai ?Z?N, ai ? aj?Z) under the condition ρ0?ρi ? 1 (i=1,2,…,n).  相似文献   

8.
The Schur product of two n×n complex matrices A=(aij), B=(bij) is defined by A°B=(aijbij. By a result of Schur [2], the algebra of n×n matrices with Schur product and the usual addition is a commutative Banach algebra under the operator norm (the norm of the operator defined on Cn by the matrix). For a fixed matrix A, the norm of the operator B?A°B on this Banach algebra is called the Schur multiplier norm of A, and is denoted by ∥Am. It is proved here that ∥A∥=∥U1AU∥m for all unitary U (where ∥·∥ denotes the operator norm) iff A is a scalar multiple of a unitary matrix; and that ∥Am=∥A∥ iff there exist two permutations P, Q, a p×p (1?p?n) unitary U, an (n?p)×(n?p)1 contraction C, and a nonnegative number λ such that
A=λPU00CQ;
and this is so iff ∥A°A?∥=∥A∥2, where ā is the matrix obtained by taking entrywise conjugates of A.  相似文献   

9.
Let F be a field, F1 be its multiplicative group, and H = {H:H is a subgroup of F1 and there do not exist a, b?F1 such that Ha+b?H}. Let Dn be the dihedral group of degree n, H be a nontrivial group in H, and τn(H) = {α = (α1, α2,…, αn):αi?H}. For σ?Dn and α?τn(H), let P(σ, α) be the matrix whose (i,j) entry is αiδiσ(j) (i.e., a generalized permutation matrix), and
P(Dn, H) = {P(σ, α):σ?Dn, α?τn(H)}
. Let Mn(F) be the vector space of all n×n matrices over F and TP(Dn, H) = {T:T is a linear transformation on Mn (F) to itself and T(P(Dn, H)) = P(Dn, H)}. In this paper we classify all T in TP(Dn, H) and determine the structure of the group TP(Dn, H) (Theorems 1 to 4). An expository version of the main results is given in Sec. 1, and an example is given at the end of the paper.  相似文献   

10.
Let An(ω) be the nxn matrix An(ω)=(aij with aijij, 0?i,j?n?1, ωn=1. For n=rs we show
An(w)PsrPrs0s?1Ar(ws)Psr{Trs(w)}0r?1As(wr)
=(Ar?Is)Tsr(Ir?As). When r and s are relatively prime this identity implies a wide class of identities of the form PAn(ω)QT=Ar(ωαs)?As(ωβr). The matrices Psr, Prs, P, and Q are permutation matrices corresponding to the “data shuffling” required in a computer implementation of the FFT, and Tsr is a diagonal matrix whose nonzeros are called “twiddle factors.” We establish these identities and discuss their algorithmic significance.  相似文献   

11.
Consider a spline s(x) of degree n with L knots of specified multiplicities R1, …, RL, which satisfies r sign consistent mixed boundary conditions in addition to s(n)(a) = 1. Such a spline has at most n + 1 ?r + ∑j = 1LRj zeros in (a, b) which fulfill an interlacing condition with the knots if s(x) ? = 0 everywhere. Conversely, given a set of n ?r + ∑j = 1LRj zeros then for any choice η1 < ··· < ηL of the knot locations which fulfills the interlacing condition with the zeros, the unique spline s(x) possessing these knots and zeros and satisfying the boundary conditions is such that s(n)(x) vanishes nowhere and changes sign at ηj if and only if Rj is odd. Moreover there exists a choice of the knot locations, not necessarily unique, which makes ¦s(n)(x)¦ ≡ 1. In particular, this establishes the existence of monosplines and perfect splines with knots of given multiplicities, satisfying the mixed boundary conditions and possessing a prescribed maximal zero set. An application is given to double-precision quadrature formulas with mixed boundary terms and a certain polynomial extremal problem connected with it.  相似文献   

12.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

13.
Gauss's (2n+1)-point trigonometric interpolation formula, based upon f(xi), i = 1(1)2n+1, gives a trigonometric sum of the nth order, S2n+1(x = a0 + ∑jn = 1(ajcos jx + bjsin jx), which may be integrated to provide formulas for either direct quadrature or stepwise integration of differential equations having periodic (or near-periodic) solutions. An “orthogonal” trigonometric sum S2r+1(x) is one that satisfies
abS2r+1(x)S2r′+1(x)dx=0, r′<r
and two other arbitrarily imposable conditions needed to make S2r1(x) unique. Two proofs are given of a fundamental factor theorem for any S2n+1(x) (somewhat different from that for polynomials) from which we derive 2r-point Gaussian-type quadrature formulas, r = [n/2] + 1, which are exact for any S4r?1(x). We have
abS4r?1(x)dx=∑j=12rAjS4r?1(xj)
where the nodes xj, j = 1(1)2r, are the zeros of the orthogonal S2r+1(x). It is proven that Aj > 0 and that 2r-1 of the nodes must lie within the interval [a,b], and the remaining node (which may or may not be in [a,b]) must be real. Unlike Legendre polynomials, any [a′,b′] other than a translation of [a,b], requires different and unrelated sets of nodes and weights. Gaussian-type quadrature formulas are applicable to the numerical integration of the Gauss (2n+1)-point interpolation formulas, with extra efficiency when the latter are expressed in barycentric form. S2r+1(x), xjandAj, j = 1(1)2r, were calculated for [a,b] = [0, π/4], 2r = 2 and 4, to single-precision accuracy.  相似文献   

14.
15.
Put Zn = {1, 2,…, n} and let π denote an arbitrary permutation of Zn. Problem I. Let π = (π(1), π(2), …, π(n)). π has an up, down, or fixed point at a according as a < π(a), a > π(a), or a = π(a). Let A(r, s, t) be the number of πZn with r ups, s downs, and t fixed points. Problem II. Consider the triple π?1(a), a, π(a). Let R denote an up and F a down of π and let B(n, r, s) denote the number of πZn with r occurrences of π?1(a)RaRπ(a) and s occurrences of π?1(a)FaFπ(a). Generating functions are obtained for each enumerant as well as for a refinement of the second. In each case use is made of the cycle structure of permutations.  相似文献   

16.
A technique for the numerical approximation of matrix-valued Riemann product integrals is developed. For a ? x < y ? b, Im(x, y) denotes
χyχv2?χv2i=1mF(νi)dν12?dνm
, and Am(x, y) denotes an approximation of Im(x, y) of the form
(y?x)mk=1naki=1mF(χik)
, where ak and yik are fixed numbers for i = 1, 2,…, m and k = 1, 2,…, N and xik = x + (y ? x)yik. The following result is established. If p is a positive integer, F is a function from the real numbers to the set of w × w matrices with real elements and F(1) exists and is continuous on [a, b], then there exists a bounded interval function H such that, if n, r, and s are positive integers, (b ? a)n = h < 1, xi = a + hi for i = 0, 1,…, n and 0 < r ? s ? n, then
χr?χs(I+F dχ)?i=rsI+j=1pIji?1i)
=hpH(χr?1s)+O(hp+1)
Further, if F(j) exists and is continuous on [a, b] for j = 1, 2,…, p + 1 and A is exact for polynomials of degree less than p + 1 ? j for j = 1, 2,…, p, then the preceding result remains valid when Aj is substituted for Ij.  相似文献   

17.
The level code representation of the simplest ballot problem (weak lead lattice paths from (0, 0) to (n, n) is the set of sequences (b1,…, bn) defined by b1 = 1, bi ?1bii, 2 ≤ in. Each sequence is monotone non-decreasing, has a specification (c1, c2,…, cn) with ci the number of sequence elements equal to i (hence c1 + c2…+ cn = n), and may be permuted in n!c1!…cn! ways. The set of permuted sequences, as noted in [4], is the set of parking functions, introduced by Konheim and Weiss in [1]. To count parking functions by number of fixed points, associate the rook polynomial for matching a deck of cards of specification (c1,…,cn), ci cards marked i, with a deck of n distinct cards. The hit polynomial Hn(x) corresponding to the sum of such rook polynomials over all sequences (I am using the terminology of [2]) is the required enumerator and turns out to be simply
(n+1)2Hn(x)=(x+n)n+1?(x?1)n+1
.  相似文献   

18.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

19.
We consider the problem of updating input-output matrices, i.e., for given (m,n) matrices A ? 0, W ? 0 and vectors u ? Rm, v?Rn, find an (m,n) matrix X ? 0 with prescribed row sums Σnj=1Xij = ui (i = 1,…,m) and prescribed column sums Σmi=1Xij = vj (j = 1,…,n) which fits the relations Xij = Aij + λiWij + Wij + Wijμj for all i,j and some λ?Rm, μ?Rn. Here we consider the question of existence of a solution to this problem, i.e., we shall characterize those matrices A, W and vectors u,v which lead to a solvable problem. Furthermore we outline some computational results using an algorithm of [2].  相似文献   

20.
Let {vij} i,j = 1, 2,…, be i.i.d. standardized random variables. For each n, let Vn = (vij) i = 1, 2,…, n; j = 1, 2,…, s = s(n), where (ns) → y > 0 as n → ∞, and let Mn = (1s)VnVnT. Previous results [7, 8] have shown the eigenvectors of Mn to display behavior, for n large, similar to those of the corresponding Wishart matrix. A certain stochastic process Xn on [0, 1], constructed from the eigenvectors of Mn, is known to converge weakly, as n → ∞, on D[0, 1] to Brownian bridge when v11 is N(0, 1), but it is not known whether this property holds for any other distribution. The present paper provides evidence that this property may hold in the non-Wishart case in the form of limit theorems on the convergence in distribution of random variables constructed from integrating analytic function w.r.t. Xn(Fn(x)), where Fn is the empirical distribution function of the eigenvalues of Mn. The theorems assume certain conditions on the moments of v11 including E(v114) = 3, the latter being necessary for the theorems to hold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号