首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models for the origin of accretionary lapilli   总被引:1,自引:0,他引:1  
Binding between initially cohesionless ash particles to form concentric accretionary lapilli is provided primarily by the capillary forces of liquid bridges from condensed moisture and by electrostatic attraction. Capillary forces are strong bonds if the particles are in close contact, but they decrease rapidly with increasing particle spacing. Electrostatic attraction between charged ash particles is much weaker but effective over larger distances, increasing the frequency of collision between them.Experimental results of liquid film binding of volcanic ash showed that agglomeration was most successful between 15 and 25 wt.%, defining the agglomeration window for the formation of accretionary lapilli. Below 5–10 wt.% and above about 25–30 wt.% of water, concentric agglomeration was inhibited. Particles <350 m could be selected from a wider particle population in the experiments using only small amounts of water, which can explain the growth of accretionary lapilli in pyroclastic surges around agglomeration nuclei. Experiments testing the behavior of volcanic ash in electric fields showed that ash clusters formed instantaneously when the ash entered the field between a corona discharge gun and a grounded metal plate. The maximum grain size incorporated into the artificial clusters was about 180 m but >90 wt.% of ash was <45 m.Accretionary lapilli form in turbulent ash clouds when particles carrying liquid films of condensed moisture collide with each other and when the binding forces exceed the grain dispersive forces. Larger particles >500 m act as agglomeration nuclei in surges, accreting ash <350 m around them. In pyroclastic flows the aggregates are thought to originate from already size-sorted ash at the interface between the lower avalanche part of the flow and its overriding elutriation cloud. The fine-grained rims around accretionary lapilli found close to source are interpreted to be accreted dominantly by electrostatic attraction of very fine ash similar to clustering in elutriation clouds.  相似文献   

2.
3.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

4.
The detailed stratigraphic study of the pyroclastic surge units S1, IU, and S3 produced during the most violent phases of the 1982 eruption of El Chichón volcano, contains a complex succession of hydromagmatic events triggered by the interaction of different proportions of magma and external water. Component analyses of the horizons within single units reveal that almost all wet and cohesive horizons contain ash aggregates. Based on their morphology and internal structure four different types of aggregates were distinguished: (a) accretionary lapilli, (b) armored lapilli, (c) irregular aggregates, and (d) cylindrical aggregates. The first three types have been described in the volcanological literature (field and experimental studies); cylindrical forms are reported here for the first time. These hollow cylindrical aggregates consist of concentric layers of crystals and glass fragments set in a finer-grained matrix. They formed around millimeter-size foliage fragments that are locally preserved in the interior of the aggregates as scorched or completely carbonized vestiges. SEM analyses suggest different mechanisms of formation for the four types of aggregates. Irregular aggregates and armored lapilli formed nearly instantaneously, whereas accretionary lapilli and cylindrical aggregates resulted from progressive aggregation of ash in different regions of the eruptive cloud.All types of ash aggregates contain fractured particles. This common feature suggests that particles ruptured during fragmentation prior to the growth of the aggregates. Broken clasts with cracks filled by a fine-grained matrix only occur inside the cylindrical ash aggregates and to a lesser degree in some types of accretionary lapilli. This suggests that small thermal contrasts at the contact of warm particles with the colder fine-grained matrix of the aggregate cause existing small fractures to propagate and open as the already weakened clasts deform slightly. The occurrence of all four types of aggregates in some horizons indicates that several mechanisms of aggregation occurred nearly simultaneously. The pyroclastic clouds therefore were not only stratified in terms of density but the content of fluid phases also were not uniform. A dark-red, Fe-rich amorphous film (locally rich in P and S) envelops the particles and fosters their preservation in the deposits by forming a hard shell. The composition of this cement reflects the abundance of these elements in acid fluids of hydrothermal systems that were intersected by the conduit during the eruption. In distal areas, fallout aggregates were incorporated by dissipating pyroclastic surges.  相似文献   

5.
Two major pyroclastic surges generated during the 4 April 1982 eruption of El Chichon devastated an area of 153 km2 with a quasi-radial distribution around the volcano. The hot surge clouds carbonized wood throughout their extent and were too hot to allow accretionary lapilli formation by vapor condensation. Field evidence indicates voidage fraction of 0.99 in the surge cloud with extensive entrainment of air. Thermal calculations indicate that heat content of pyroclasts can heat entrained air and maintain high temperatures in the surge cloud. The dominant bed form of the surge deposits are sand waves shaped in dune forms with vertical form index of 10–20, characterized by stoss-side erosion and lee-side deposition of 1–10 cm reversely graded laminae. A systematic decrease in maximum lithic diameter with distance from source is accompanied by decrease in wavelength and amplitude. Modal analysis indicates fractionation of glass and pumice from the surge cloud relative to crystals, resulting in loss of at least 10%–25% of the cloud mass due to winnowing out of fines during surge emplacement. Greatest fractionation from the –1.0–0.0– grain sizes reflects relatively lower pumice particle density in this range and segregation in the formative stages of the surge cloud. Extensive pumice rounding indicates abrasion during bed-load transport. Flow of pyroclastic debris in the turbulent surge cloud was by combination of bed-load and suspended-load transport. The surges are viewed as expanding pyroclastic gravity flows, which entrain and mix with air during transport. The balance between sedimentation at the base of the surge cloud and expansion due to entrainment of air contributed to low cloud density and internal turbulence, which persisted to the distal edge of the surge zone.  相似文献   

6.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

7.
Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 m and a maximum grain size of 250 to 350 m. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 m and a maximum grain size of 350 to 500 m. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 m and a maximum grain size up to 2 mm.  相似文献   

8.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

9.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   

10.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   

11.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Eighteen digital AVHRR (advanced very high resolution radiometer) data sets from NOAA-6 and NOAA-9 polar-orbiting satellites recorded between 27 March and 7 April 1986 depict the eruptive activity of Augustine volcano, located 280 km SW of Anchorage, Alaska. The synoptic view (resolution of either 1.1 or 4.4 km), frequent coverage (often twice a day), and multispectral coverage (five bands: 0.58–0.68; 0.72–1.1; 3.55–3.93; 10.5–11.3; and 11.5–12.5 m) makes the AVHRR broadly applicable to analyzing explosive eruption clouds. The small scale of the Augustine activity (column heights of 2–13 km and eruption rates of 2x106–8x107 metric tonnes/day) facilitated intensive multispectral study because the plumes generally covered areas within the 550x550 km area of one easily manipulated image field. Hourly ground weather data and twice-daily radiosonde measurements from stations surrounding the volcano plus numerous volcanological observations were made throughout the eruption, providing important ground truth with which to calibrate the satellite data. The total erupted volume is estimated to be at least 0.102 km3. The pattern of changing eruption rates determined by satellite observations generally correlate with more detailed estimates of explosion magnitudes. Multispectral processing techniques were used to distinguish eruption clouds from meteorological clouds. Variable weather during the Augustine eruption offered an opportunity to test various trial algorithms. A ratio between thermal IR channels four and five, served to delineate the ashbearing eruption plumes from ordinary clouds. Future work is needed to determine whether the successful multispectral discrimination is caused by wavelength-dependent variable emission of silicate ash or reflects a spectral role of sulfuric acid aerosol in the plume.  相似文献   

13.
14.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   

15.
The aerodynamic behaviour of volcanic aggregates   总被引:1,自引:1,他引:0  
A large proportion of solid material transported within the atmosphere during volcanic eruptions consists of particles less than 500 m in diameter. The majority of these particles become incorporated into a wide range of aggregate types, the aerodynamic behaviour of which has not been determined by either direct observation or in the laboratory. In the absence of such data, theoretical models of fallout from volcanic plumes make necessarily crude assumptions about aggregate densities and fall velocities. Larger volcanic ejecta often consists of pumice of lower than bulk density. Experimental data are presented for the fall velocities of porous aggregates and single particles, determined in systems analogous to that of ejecta falling from a volcanic plume. It is demonstrated that the fall of aggregates may be modelled in identical fashion to single particles by using a reduced aggregate density dependent on the porosity, and a size corresponding to an enclosing sphere. Particles incorporated into aggregates attain a substantially higher fall velocity than single particles. This is due to the larger physical dimensions of the aggregate, which overcomes the effect of lower aggregate density. Additionally, the internal porosity of the aggregate allows some flow of fluid through the aggregate and this results in a small increase in fall velocity. The increase in fall velocity of particles incorporated into aggregates, rather than falling individually, results in the enhanced removal of fine material from volcanic plumes.  相似文献   

16.
The goal of this paper is to determine the parameters that control the aggregation efficiency and the growth rate of volcanic particles within the eruption column. Numerical experiments are performed with the plume model ATHAM (Active Tracer High resolution Atmospheric Model). In this study we employ the parameterizations described in a companion paper (this issue). The presence of hydrometeors promotes the aggregation of ash particles, which strongly increases their fall velocities and thus their environmental impact. The tephra mass is about two orders of magnitude greater than that of hydrometeors during typical Plinian eruptions without interaction of external water. Ice is highly dominant in comparison to liquid water (> 99% by mass). This is caused by the fast column rise (> 100 m s− 1 on average) to very cold altitudes. Most particles occur in the form of frozen aggregates with low ice content.The collection efficiency is governed by the availability of hydrometeors acting as adhesives at the particles’ surface in our study, and wet ash particles have a higher sticking capacity than icy ones. Therefore, aggregation is fastest during the eruption within the column when limited regions of liquid water exist and when particle concentrations are very high (of the order of 105 cm− 3). Increased humidity in the background atmosphere generally leads to enhanced ice formation, but shows only a weak influence on the aggregation process. First sensitivity studies showed, however, a significant increase of the liquid water fraction when considering salinity effects. The availability of water or ice at the particles' surfaces is also governed by the surface properties, the porosity and permeability of ash, which are not well established to date. Particle growth is significantly enhanced for greater differences in the sizes and fall velocities among particles, as gravitational capture becomes more efficient. Our experiments indicate a major influence of the erupted particle size distribution. First sensitivity studies show that electrostatic forces result in a significant enhancement of aggregated particles.The present exploratory study provides new insights into the sensitivity of the ash aggregation process to a number of key parameters. Our results indicate the need of further constraining particle composition, size, porosity, permeability, and surface properties at low temperatures by in situ observations in the laboratory and in the field. In addition further research on electrostatic aggregation would be desirable.  相似文献   

17.
Meteoric smoke forms in the mesosphere from the recondensation of the metallic species and silica produced by meteoric ablation. A photochemical flow reactor was used to generate meteoric smoke mimics using appropriate photolytic precursors of Fe and Si atoms in an excess of oxidant. The following systems were studied: (i) Fe+O3/O2, (ii) Fe+O3/O2+H2O, (iii) Fe+Si/SiO+O3/O2 and (iv) Si/SiO+O3/O2. The resulting nano-particles were captured for imaging by transmission electron microscopy, combined with elemental analysis using X-ray (EDX) and electron energy loss (EELS) techniques. These systems generated particle compositions consistent with: (i) Fe2O3 (hematite), (ii) FeOOH (goethite), (iii) Fe2SiO4 (fayalite) and (iv) SiO2 (silica). Electron diffraction revealed that the Fe-containing particles were entirely amorphous, while the SiO2 particles displayed some degree of crystallinity. The Fe-containing particles formed fractal aggregates with chain-like morphologies, whereas the SiO2 particles were predominantly spherical and compact in appearance. The optical extinction spectra of the Fe-containing particles were measured from 300 nm<λ<650 nm. Excellent agreement was found with the extinction calculated from Mie theory using the refractive indices for the bulk compounds, and assuming that the fractal aggregates are composed of poly-disperse distributions of constituent particles with radii ranging from 5 to 100 nm. These sizes were confirmed from measurements of the particle size distributions and microscopic imaging. Finally, the particle growth kinetics of the Fe-containing systems exhibit unexpectedly rapid agglomerative coagulation. This was modelled by assuming an initial period of coalescent particle growth resulting from diffusional (Brownian) coagulation to form primary particles; further growth of these particles is then dominated by long-range magnetic dipole–dipole interactions, leading to the fractal aggregates observed. The atmospheric implications of this work are then discussed.  相似文献   

18.
The violent August 16–17, 2006 Tungurahua eruption in Ecuador witnessed the emplacement of numerous scoria flows and the deposition of a widespread tephra layer west of the volcano. We assess the size of the eruption by determining a bulk tephra volume in the range 42–57 × 106 m3, which supports a Volcanic Explosivity Index 3 event, consistent with calculated column height of 16–18 km above the vent and making it the strongest eruptive phase since the volcano’s magmatic reactivation in 1999. Isopachs west of the volcano are sub-bilobate in shape, while sieve and laser diffraction grain-size analyses of tephra samples reveal strongly bimodal distributions. Based on a new grain-size deconvolution algorithm and extended sampling area, we propose here a mechanism to account for the bimodal grain-size distribution. The deconvolution procedure allows us to identify two particle subpopulations in the deposit with distinct characteristics that indicate dissimilar transport-depositional processes. The log-normal coarse-grained subpopulation is typical of particles transported downwind by the main volcanic plume. The positively skewed, fine-grained subpopulation in the tephra fall layer shares close similarities with the elutriated co-pyroclastic flow ash cloud layers preserved on top of the scoria flow deposits. The area with the higher fine particle content in the tephra layer coincides with the downwind prolongation of the pyroclastic flow deposits. These results indicate that the bimodal distribution of grain size in the Tungurahua fall deposit results from synchronous deposition of lapilli from the main plume and fine ash elutriated from scoria flows emplaced on the western flank of the volcano. Our study also reveals that inappropriate grain-size data processing may produce misleading determination of eruptive type.  相似文献   

19.
20.
Among the series of eruptions at Miyakejima volcano in 2000, the largest summit explosion occurred on 18 August 2000. During this explosion, vesiculated bombs and lapilli having cauliflower-like shapes were ejected as essential products. Petrological observation and chemical analyses of the essential ejecta and melt inclusions were carried out in order to investigate magma ascent and eruption processes. SEM images indicate that the essential bombs and lapilli have similar textures, which have many tiny bubbles, crystal-rich and glass-poor groundmass and microphenocrysts of plagioclase, augite and olivine. Black ash particles, which compose 40% of the air-fall ash from the explosion, also have similar textures to the essential bombs. Whole-rock analyses show that the chemical composition of all essential ejecta is basaltic (SiO2=51–52 wt%). Chemical analyses of melt inclusions in plagioclase and olivine phenocrysts indicate that melt in the magma had 0.9–1.9 wt% H2O, <0.011 wt% CO2, 0.04–0.17 wt% S and 0.06–0.1 wt% Cl. The variation in volatile content suggests degassing of the magma during ascent up to a depth of about 1 km. The ratio of H2O and S content of melt inclusions is similar to that of volcanic gas, which has been intensely and continuously emitted from the summit since the end of August 2000, indicating that the 18 August magma is the source of the gas emission. Based on the volatile content of the melt inclusions and the volcanic gas composition, the initial bulk volatile content of the magma was estimated to be 1.6–1.9 wt% H2O, 0.08–0.1 wt% CO2, 0.11–0.17 wt% S and 0.06–0.07 wt% Cl. The basaltic magma ascended from a deeper chamber (10 km) due to decrease in magma density caused by volatile exsolution with pressure decrease. The highly vesiculated magma, which had at least 30 vol% bubbles, may have come into contact with ground water at sea level causing the large explosion of 18 August 2000.Editorial responsibility: S. Nakada, T. DuittAn erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号