首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The objective of this research was to study the metabolism of individual trans fatty acids (FAs) that can be found in ruminant fat or partially hydrogenated vegetable oils (PHVO) and determine their effects on FA composition and lipogenic gene expression in adipocytes. Differentiated 3T3‐L1 adipocytes were treated with 200 µM of either trans‐9‐18:1, trans‐11‐18:1, trans‐13‐18:1, cis‐9‐18:1 or BSA vehicle control for 120 h. Trans‐9‐18:1 increased total cell FA content (µmole/well) compared to other FA treatments, which was mainly related to the accumulation of trans‐9‐18:1 in the cells. Adipocytes were able to desaturate a significant proportion of absorbed trans‐11‐18:1 and trans‐13‐18:1 (~20 and 30 % respectively) to cis‐9,trans‐11‐18:2 and cis‐9,trans‐13‐18:2, whereas trans‐9‐18:1 was mostly incorporated intact resulting in a greater lipophilic index (i.e. decreased mean FA fluidity) of adipocytes. Trans‐9‐18:1 up‐regulated (P < 0.05) the expression of lipogenic genes including acetyl‐CoA carboxylase (1.65 fold), FA synthase (1.45 fold), FA elongase‐5 (1.52 fold) and stearoyl‐CoA desaturase‐1 (1.49 fold), compared to the control, whereas trans‐11‐18:1 and trans‐13‐18:1 did not affect the expression of these genes compared to control. Our results suggest that the metabolism and lipogenic properties of trans‐11‐18:1 and trans‐13‐18:1, typically the most abundant trans FA in beef from cattle fed forage‐based diets, are similar and are different from those of trans‐9‐18:1, the predominant trans FA in PHVO.  相似文献   

2.
3.
4.
The effects of supplementing diets with n‐3 alpha‐linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n‐3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号