首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke.  相似文献   

2.
The objectives of this study, conducted on neonatal rat spinal cord and dorsal roots in vitro, were to characterise the actions of a range of willardiine analogues on GluR5-containing kainate receptors present in dorsal roots, to determine whether GluR5-containing receptors are also present on motoneurones, and to differentiate responses mediated by kainate receptors from those mediated by AMPA receptors on motoneurones. (S)-5-Trifluoromethyl-willardiine, (S)-5-iodowillardiine, (S)-5-iodo-6-azawillardiine and ATPA were found to be potent agonists of kainate receptors on dorsal roots (EC50 values 0.108 +/- 0.002, 0.127 +/- 0.010, 0.685 +/- 0.141 and 1.3 +/- 0.3 microM, respectively) being more potent but of lower efficacy than kainate (EC50 value 14.8 +/- 1.8 microM). (S)-5-Iodo-6-azawillardiine blocked kainate-induced depolarisations of the dorsal root, probably via its desensitising action. Kainate-induced responses of dorsal roots were weakly antagonised by (RS)-3,5-dicarboxyphenylglycine (DCPG) (apparent KD 1.5 +/- 0.4 mM). Kainate receptors containing GluR5 subunits do not appear to be present on motoneurones since (RS)-3,5-DCPG (1 mM) potentiated rather than antagonised kainate-induced depolarisations of motoneurones. Although (S)-5-iodowillardiine (a potent and selective agonist at GluR5-containing kainate receptors) depolarised motoneurones (EC50 value 5.8 +/- 0.6 microM), such depolarisations were antagonised by both (RS)-3,4- and (RS)-3,5-DCPG, which are selective AMPA receptor antagonists at motoneurones, showing a KD value of 73 microM (Schild slope, 0.96 +/- 0.09) and an apparent KD value of 123 +/- 38 microM, respectively. This accords with the previously reported activity of willardiine analogues at AMPA receptors. Since neither (RS)-3,4- nor (RS)-3,5-DCPG antagonised kainate-induced motoneuronal depolarisations but cyclothiazide enhanced and GYK153655 blocked these responses it is possible that a component of the kainate response may be mediated by a population of DCPG-insensitive AMPA receptors on motoneurones. However, it is also possible that a population of kainate receptors other than those containing GluR5 subunits, are responsible for these effects. The new compounds introduced in this study are likely to be useful tools for studying the physiological role of kainate receptors in CNS function.  相似文献   

3.
AMPA/kainate (KA) receptors mediate a component of ganglion cell excitatory postsynaptic currents (EPSCs). We investigated whether desensitization at these receptors contribute to the shape of transient EPSCs in ON-OFF ganglion cells. Whole-cell, voltage-clamp recordings were made from ganglion cells in the retinal slice or in isolation. EPSCs were evoked by either stimulating the slice with light or puffing K+ at the outer plexiform layer (OPL). The AMPA/KA receptor-mediated component of the EPSCs was isolated by including NMDA receptor antagonists in the bath. Strychnine and picrotoxin blocked inhibitory inputs. In isolated ganglion cells, cyclothiazide (10 microM), which blocks desensitization in non-NMDA receptors, enhanced both the amplitude and the duration of currents evoked by puffs of AMPA or glutamate. EPSCs evoked by K(+)-puffs in the OPL were also enhanced by cyclothiazide (30 microM). When AMPA/KA receptors were blocked with NBQX (10 microM), no enhancement of the EPSCs by cyclothiazide was observed, indicating that cyclothiazide did not act presynaptically. Cyclothiazide also enhanced the amplitude and duration of both the ON and OFF light-evoked (L-) EPSCs recorded in ON-OFF ganglion cells. Current-voltage relationships showed the enhancement was not voltage dependent. When control and enhanced responses where normalized, it was observed that the rate of desensitization of both the ON and OFF L-EPSCs was decreased by cyclothiazide. Cyclothiazide selectively enhanced the AMPA/KA receptor-mediated component of ganglion cells EPSCs, suggesting that desensitization of AMPA/KA receptors shape transient L-EPSCs.  相似文献   

4.
We investigated kainate-induced excitotoxicity in embryonic rat hippocampal cells cultured in a chemically defined medium. Treatment with kainate for 24 h resulted in neuronal death, as assessed by the release of lactate dehydrogenase into the culture media. This neurotoxic effect was kainate dose- and culture age-dependent. EC50 of kainate was 127 +/- 11 microM. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (f)quinoxaline (NBQX) completely blocked the toxicity, while MK801, an N-methyl-D-aspartate (NMDA) receptor antagonist, also blocked it but not completely. Furthermore, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) attenuated the kainate injury, while the selective and noncompetitive AMPA-preferring receptor antagonist 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzo-diazepine (GYKI 52466) blocked it completely. Concanavalin A (ConA), which potentiates the response to kainate at kainate-preferring receptors, had little effect on kainate toxicity. Further, AMPA alone induced little toxicity, but produced remarkable toxicity when cyclothazide was used to block the desensitization of AMPA-preferring receptors. These results indicate that kainate excitotoxicity in hippocampal cultures is mediated by AMPA- but not kainate-preferring receptors, and that it involves NMDA-receptor-mediated toxicity. The non-desensitizing response at AMPA-preferring receptors may play an important role in kainate-induced excitotoxicity.  相似文献   

5.
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.  相似文献   

6.
Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.  相似文献   

7.
Excitatory amino acids (EAA) acting on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors play an important role in synaptic transmission in the spinal cord. Quantitative autoradiography and physiological experiments suggest that NMDA receptors are localized mainly in lamina II while kainate and AMPA receptors are found on both dorsal and ventral horn neurons. However the cell types expressing EAA receptors and their laminar distribution is not known. We have used a cobalt uptake method to study the morphology and distribution of spinal cord neurons expressing AMPA, kainate, or NMDA excitatory amino acid receptors in the lumbar enlargement of the rat spinal cord. The technique involved superfusion of hemisected spinal cords of 14 day-old rat pups in vitro with excitatory amino acid receptor ligands in the presence of CoCl2. Cobalt has been shown to enter cells through ligand-gated ion channels in place of Ca2+. Cells which accumulated cobalt ions following activation by ionotropic excitatory amino acid receptors were visualized histochemically. The cobalt uptake generated receptor-specific labeling of cells, as the NMDA receptor antagonist D-(-)-2-amino-(5)-phosphonovaleric acid (D-AP-5) (20 microM) blocked the NMDA, but not kainate-induced cobalt uptake. The kainate-induced cobalt labeling was reduced by the non-selective excitatory amino acid receptor antagonist kynurenic acid (4 mM). Passive opening of the voltage-gated Ca(2+)-channels by KCl (50 mM) did not result in cobalt uptake, indicating that cobalt enters the cells through ligand-gated Ca(2+)-channels. AMPA (500 microM), kainate (500 microM), or NMDA (500 microM) each induced cobalt uptake with characteristic patterns and distributions of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal perikarya while NMDA-induced uptake was the lowest. AMPA and kainate, but not NMDA superfusion, resulted in cobalt labeling of glial cells. Our results show that the cobalt uptake technique is a useful way to study the morphology and distribution of cells expressing receptors with ligand-gated Ca2+ channels.  相似文献   

8.
Organotypic hippocampal cultures were exposed to defined periods (30 and 60 min) of combined oxygen and glucose deprivation, mimicking transient ischemic conditions. The involvement of different glutamate receptors in individual hippocampal subfields (CA1, CA3 and dentate gyrus) was studied using antagonists of NMDA (dizocilpine) and AMPA/kainate receptors (CNQX and GYKI 52466). Staining with the fluorescent dye propidium iodide (PI) allowed detection of damaged cells. For quantitative determination of neuronal damage, fluorescence intensity was measured after a 22 h recovery period and was related to maximal fluorescence intensity measured after fixation and PI restaining of the cultures at the end of the experiment. Dizocilpine (10 microM), CNQX (100 microM) and GYKI 52466 (100 microM) provided complete protection in CA1, CA3 and dentate gyrus following the moderate ischemic insult, when the antagonists were present permanently. This indicates that none of the ionotropic glutamate receptor subtypes dominated toxicity in the most sensitive subpopulation of neurons. When applied only during the recovery period protection with dizocilpine (10 microM) or CNQX (100 microM) was drastically reduced by about 60% in the most sensitive area (CA1), but only slightly by 15% in CA3. Therefore the onset of irreversible damage seems to occur earlier in CA1 than in CA3. Blockade of AMPA/kainate receptors by GYKI 52466 (100 microM) offered no neuroprotection if the compound was applied only during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The activation-inactivation properties of membrane currents induced by the rapid application of glutamate or kainate were studied in cultured hippocampal neurons and in HEK cells transfected with a cDNA encoding the GluR6 subunit. The onset of desensitization was rapid and similar in native and recombinant channels (approximately 80 s(-1) of onset rate constant). Recovery from desensitization was slow and agonist-dependent in neurons, proceeding slightly faster in GluR6 receptors. Half-maximal activation (EC50) of native channels was obtained at a glutamate concentration of 330 microM, while the half-maximal steady state desensitization (IC1/2) was attained at 2.8 microM. These values differed from those obtained in recombinant receptors (EC50 = 762 microM and IC1/2 = 0.44 microM). A small window under the crossing point of activation and inactivation curves was observed, indicating that, for some concentrations of either agonist, steady state channel activity could exist. In native receptors, this window presented maximum values at approximately 100 microM for glutamate, which predicted well the potency of glutamate to reduce the GABAergic drive in hippocampal slices. These data indicate that for neuronal kainate receptors, the concentrations for half activation and half inactivation differ by two orders of magnitude such that the maximum response to a maintained concentration of glutamate is small, and the steady state dose response curve is skewed and bell shaped.  相似文献   

10.
Allosteric regulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors include 2,3-benzodiazepines such as GYKI 52466 and GYKI 53655 and the chaotropic anion thiocyanate that inhibit, and benzothiadiazines such as cyclothiazide that potentiate AMPA receptor currents. Here we sought to determine whether the allosteric regulators modulate AMPA receptors at a common or distinct allosteric sites by comparing their actions on AMPA- and kainate-evoked currents in cultured rat hippocampal neurons and Xenopus oocytes expressing recombinant AMPA receptor subunits. GYKI 52466 and thiocyanate blocked AMPA-evoked currents in a concentration-dependent manner (IC50 values, 8.2 microM and 1.1 mM, respectively); in contrast, kainate-evoked currents were blocked by GYKI 52466, but were potentiated by high concentrations of thiocyanate (> or = 3 mM). Thiocyanate enhanced the rate of desensitization and slowed recovery from desensitization of AMPA-evoked currents, whereas GYKI 52466 failed to affect desensitization. Among neurons in the hippocampal cultures, there was cell-to-cell variability in the sensitivity to block of AMPA-evoked currents by thiocyanate that was correlated with the degree of potentiation by cyclothiazide. Moreover, cyclothiazide caused a parallel rightward shift in the concentration-response curve for thiocyanate block, and slowed the onset of thiocyanate block to a rate that was similar to that of cyclothiazide dissociation. Together, these observations suggest that thiocyanate and cyclothiazide act at non-distinct allosteric sites. GYKI 52466 blocked AMPA receptor responses to a similar extent, irrespective of the degree of cyclothiazide potentiation. Moreover, the kinetics of GYKI 53655 block in the presence of cyclothiazide were not consistent with a competitive interaction. As is the case for cyclothiazide, SCN- exhibited greater affinity for flip than for flop AMPA receptor splice variants. In particular, GluR1flip/GluR2flip was especially sensitive to thiocyanate block. We conclude that thiocyanate, a flip-preferring allosteric modulator like cyclothiazide, appears to act by enhancing desensitization at a site that may overlap the site where cyclothiazide reduces desensitization, whereas 2,3-benzodiazepines act at a distinct site and the block does not involve a modification of desensitization.  相似文献   

11.
Two new compounds (LY293558 and LY294486), that antagonize homomeric human GluR5 receptors, were examined against responses mediated by kainate receptors in the CA3 region of rat hippocampal slices. Both compounds (applied at a concentration of 10 microM) antagonized reversibly currents induced by 200 nM kainate. They also antagonized reversibly the synaptic activation of kainate receptors, evoked by high-frequency stimulation of mossy fibres, in the presence of NMDA and AMPA receptor antagonists. These results show that GluR5 subunits are likely to contribute to a kainate receptor on CA3 neurones that mediates responses to both kainate and synaptically-released L-glutamate.  相似文献   

12.
The effects of lanthanum and gadolinium on currents evoked by excitatory amino acids were studied in cultured rat hippocampal and cortical neurons, in freshly dissociated dorsal root ganglion neurons, and in human embryonic kidney 293 cells expressing the GluR6 kainate receptor subunit. In all of these cells, currents mediated by kainate-preferring receptors were antagonized by low micromolar concentrations of the trivalent ions. At negative holding potentials, the IC50 values for inhibition in DRG cells were 2.8 microM for La and 2.3 microM for Gd. Kainate receptor-mediated currents in hippocampal neurons and in 293 cells expressing GluR6 were blocked by La with IC50 values of 2.1 and 4.4 microM, respectively. Steady-state inhibition by the lanthanides showed very slight dependence on membrane potential, however, we were not able to resolve any systematic variation with membrane potential in the kinetics of block onset or recovery. Inhibition was not use-dependent and was not overcome by increasing the concentration of agonist. These results indicate that lanthanides probably do not bind deep within the ion pore or directly compete for the agonist binding site. In contrast to neuronal AMPA receptors, which require more than 100 microM lanthanides for half-maximal blockade, the inhibition of neuronal and recombinant kainate receptors by these ions displays significantly higher potency.  相似文献   

13.
In the present study we evaluated the modulation of neuronal delayed rectifier K+ current (IK) by activation of ionotropic glutamate receptors. In whole-cell voltage-clamp experiments, an external application of 10-100 microM kainate suppressed the amplitude of IK following an inward shift of holding current. The effect of kainate on IK was eliminated by CN QX, an AMPA/kainate receptor antagonist, indicating that the receptor-mediated cation entry caused IK suppression. When external Na+ was completely replaced by equimolar choline+ or N-methyl-D-glucamine, kainate-induced IK suppression was abolished. Our results suggest that in cultured rat cortical neurons, AMPA/kainate receptor activation leads to an intracellular Na+ increase which blocks delayed rectifier K+ channels. This contributes to feed-forward excitation of neuronal cells in glutaminergic responses.  相似文献   

14.
Kainate is an excitatory neurotransmitter that binds to the kainate and AMPA receptor subtypes of the glutamate receptor and triggers the formation of cation permeable transmembrane channels in these receptors. In the present report the channel-opening mechanism of the AMPA receptors by kainate has been determined in rat hippocampal neurons using two different kinetic methods, namely, the rapid-flow method (cell-flow) with a 10 ms time resolution and a laser-pulse photolysis technique with a approximately 65 microseconds time resolution. The whole-cell currents induced by kainate, using the cell-flow method, are nondesensitizing and inhibited significantly by CNQX and hence pertain to activation of the AMPA receptors and not the kainate receptors. The cell-flow measurements were used to evaluate the constants pertaining to the minimum mechanism that could account for the concentration of the receptor in the open-channel form over a 500-fold range of kainate concentration. These constants, namely, the intrinsic dissociation constant of kainate from the AMPA receptor and the channel-opening equilibrium constant, were determined to be 140 +/- 30 microM and 8 +/- 2, respectively. On the other hand, the kinetics of the steps leading to channel opening was evaluated using the laser-pulse photolysis techniques. In this technique whole-cell currents were obtained by releasing kainate in the submillisecond time scale near the cell by photolysis of N-(alpha-carboxy-2-nitrobenzyl) kainate. The concentration of the released kainate was calculated by comparing the whole-cell currents obtained from the laser-pulse photolysis experiments with the whole currents obtained with 100 microM kainate on the same cell using cell-flow measurements. The rate constants for channel opening and closing were then determined from the observed rate constants for the current rise obtained as a function of kainate concentration. These rates were 5000 +/- 2000 and 640 +/- 30 s-1, respectively. The rate and equilibrium constants obtained in the present report allow an evaluation of the fraction of the receptors in the open-channel form as a function of time and kainate concentration, hence providing insight into the role of kainate in neuronal signal transmission.  相似文献   

15.
1. The effects of glutamate receptor agonists and antagonists on bipolar cells and ganglion cells were studied with the use of intracellular and extracellular recording in the superfused, isolated, flat-mounted tiger salamander retina. The goal of the experiments was to correlate glutamate receptor subtypes with their localization at specific synaptic sites in the tiger salamander retina. The drugs tested were the kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the N-methyl-D-aspartate (NMDA) receptor antagonist 3-(C+/-)-2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP) and L-2-amino-4-phosphonobutyrate (L-AP4). 2. The light responses of hyperpolarizing bipolar cells were suppressed by 20 microM CNQX, whereas L-AP4 had no effect on their light responses. In contrast, 20 microM CNQX had no effect on depolarizing bipolar cells, whereas L-AP4 abolished the light responses of these cells. 3. The light offset responses of OFF and ON-OFF ganglion cells were completely blocked by concentrations of CNQX as low as 5 microM. The light onset responses of ON-OFF ganglion cells were blocked when the concentration of CNQX was raised to 20 microM. In addition, 30 microM CPP partially blocked the light onset responses of ON-OFF ganglion cells but had a lesser effect on the light offset responses. 4. Twenty micromolars of CNQX blocked a transient component, and 20 microM CPP blocked a sustained component of the light response of sustained-ON ganglion cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The patch clamp technique, together with intracellular perfusion of the catalytic fragment of protein kinase C (PKCM), was employed to investigate the role of this enzyme in the intracellular regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors in cultured hippocampal neurones. 2. The responses evoked by near-maximal concentrations of kainate (250 microM) and AMPA (100 microM) were potentiated by the introduction of PKCM, whilst co-application of the inhibitory peptide fragment PKCI(19-36) prevented this action. 3. Modulation of kainate responses by PKCM was dependent upon the concentration of agonist applied. Currents evoked by kainate were potentiated at concentrations above those which caused 50% of the maximal response (EC50) and depressed at lower concentrations. Furthermore, okadaic acid, a specific inhibitor of phosphatases 1 and 2A, had a similar effect upon concentration-response relationships when currents activated by kainate were recorded using the perforated patch technique. 4. In addition, the mean amplitude and/or time constant of decay of miniature excitatory synaptic currents (mediated by AMPA/kainate receptors) was increased by the intracellular injection of PKCM. 5. These observations suggest that the function of postsynaptic excitatory amino acid receptors can be modulated by the activity of PKC as well as by endogenous phosphatases. This regulation may contribute to some forms of synaptic plasticity within the central nervous system.  相似文献   

17.
In outside-out patches from cultured hippocampal neurones, glutamate (1 mM) applied for 1 ms evoked currents which rose rapidly (tau(on) 451 +/- 31 micros) to a peak and then deactivated with slower kinetics (1.95 +/- 0.13 ms). Offset time constants were significantly slower with longer application durations (tau(off) 3.10 +/- 0.19, 3.82 +/- 0.25, 4.80 +/- 0.65 and 7.56 +/- 0.65 ms with 10, 20, 100 and 500 ms applications respectively). Desensitization was complete within 100 ms with a similar rate for all application durations (4.74 +/- 0.34 ms with 100 ms applications). GYKI 52466 reduced inward peak currents with an IC50 of 11.7 +/- 0.6 microM and had similar potency on steady-state currents to longer glutamate applications. GYKI 52466 had no significant effect on desensitization or deactivation time constants but caused a modest and significant prolongation of onset kinetics at higher concentrations. Cyclothiazide (100 microM) potentiated steady-state currents 25-fold at 100 ms and caused a modest but significant slowing in onset kinetics (601 +/- 49 micros with 1 ms applications) but a more pronounced prolongation of deactivation time constants (5.55 +/- 0.66 ms with 1 ms applications). In 50% of neuronal patches cyclothiazide completely eliminated desensitization. In those patches with residual desensitization, the rate was not significantly different to control (5.36 +/- 0.43 ms with 100 ms applications). Following 100 ms applications of glutamate, GYKI 52466 had IC50s of 11.7 +/- 1.1 microM and 75.1 +/- 7.0 microM in the absence and presence of cyclothiazide (100 microM) respectively. Onset kinetics were slowed from 400 +/- 20 micros to 490 +/- 30 micros by cyclothiazide (100 microM) and then further prolonged by GYKI 52466 (100 microM) to a double exponential function (tau(on1) 1.12 +/- 0.13 ms and tau(on2) 171.5 +/- 36.5 ms). GYKI 52466 did not re-introduce desensitization but concentration-dependently weakened cyclothiazide's prolongation of deactivation time constants (1 ms applications: 5.01 +/- 0.71, 4.47 +/- 0.80 and 2.28 +/- 0.64 ms with GYKI 52466 30, 100 and 300 microM respectively). NBQX reduced peak current responses with an IC50 of 28.2 +/- 1.3 nM. Paradoxically, steady-state currents with 500 ms applications of glutamate were potentiated from 3.3 +/- 1.2 pA to 29.4 +/- 6.4 pA by NBQX (1 nM). Higher concentrations of NBQX then antagonized this potentiated response. The potency of NBQX in antagonizing steady-state currents to 500 ms applications of glutamate (IC50 120.9 +/- 30.2 nM) was 2-fold less than following 100 ms applications (IC50 67.7 +/- 2.6 nM). NBQX had no effect on rapid onset, desensitization or deactivation time constants. However, a slow relaxation of inhibition was seen with longer applications. NBQX was 2-5-fold less potent against inward currents in the presence of cyclothiazide (100 microM) depending on the application duration but had no effect on the rapid onset, desensitization or deactivation time constants. The same relaxation of inhibition was seen as with NBQX alone. NBQX (1 microM) reduced AMPA receptor-mediated EPSC amplitude to 7 +/- 1% of control with no effect on kinetics. Cyclothiazide (330 microM) caused a 2.8-fold prolongation of the decay time constant (control 26.6 +/- 2.2 ms, cyclothiazide 74.2 +/- 7.6 ms, n = 9). Additional application of NBQX (1 microM) partly reversed this prolongation to 1.9 fold (47.7 +/- 2.5 ms, n = 5). These results support previous findings that cyclothiazide also allosterically influences AMPA receptor agonist/antagonist recognition sites. There were no interactions between NBQX and cyclothiazide on desensitization or deactivation time constants of glutamate-induced currents but clear interactions on EPSC deactivation kinetics. This raises the possibility that the interactions of NBQX, GYKI 52466 and cyclothiazide on AMPA-receptor-mediated EPSC kinetics observed are due to modulation of glutamate-release at presynaptic AMPA receptors.  相似文献   

18.
Using microcultured neurons and hippocampal slices, we found that under conditions that completely block AMPA receptors, kainate induces a reduction in the effectiveness of GABAergic synaptic inhibition. Evoked inhibitory postsynaptic currents (IPSCs) were decreased by kainate by up to 90%, showing a bell-shaped dose-response curve similar to that of native kainate-selective receptors. The down-regulation of GABAergic inhibition was not affected by antagonism of metabotropic receptors, while it was attenuated by CNQX. Kainate increased synaptic failures and reduced the frequency of miniature IPSCs, indicating a presynaptic locus of action. In vivo experiments using brain dialysis demonstrated that kainate reversibly abolished recurrent inhibition and induced an epileptic-like electroencephalogram (EEG) activity. These results indicate that kainate receptor activation down-regulates GABAergic inhibition by modulating the reliability of GABA synapses.  相似文献   

19.
We have analyzed the molecular and biophysical properties of glutamate-gated channels in cells of the oligodendrocyte lineage, using both the CG-4 primary cell line (Louis et al: J. Neurosci. Res. 31:193-204, 1992a) and oligodendrocyte progenitors purified from the rat cerebral cortex. CG-4 progenitor cells, as well as primary progenitors, were stained with a specific anti-GABA antibody. In whole-cell patch-clamp recordings, rapid perfusion of the agonists L-glutamate, kainate, and AMPA produced rapidly desensitizing currents in CG-4 cells. NMDA was ineffective. Both rapidly desensitizing and steady-state components of responses to kainate were inhibited by the kainate/AMPA receptor antagonist CNQX. Northern blot analysis of total mRNA isolated from CG-4 cells revealed co-expression of both AMPA- and kainate-preferring glutamate receptor subunits. The activation of glutamate receptors in CG-4 cells caused a rapid and transient elevation of mRNAs for the immediate early gene NGFI-A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号