首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discontinuous deformation analysis (DDA) is a discrete element method that was developed for computing large deformation in fractured rock masses. In this paper, we present an alternative derivation of the basic theory of DDA for planar (two-dimensional) problems, and we address the accuracy of the DDA method for sliding blocks using sensitivity analyses. Results of analyses with different parameters show that the residual and relative errors in the displacement of a frictional sliding block are controlled by the perturbation in the initial time steps of the simulation. In addition, we expose a systematic error induced by the DDA penalty formulation. Overall, the initial perturbation of the solution decreases with decreasing friction angle and increasing contact penalty and, counterintuitively, decreases with increasing time step size. All analyses show that the long runout behavior of the system trends toward the analytic solution, independent of the initial perturbation. The resulting precision of the long runout simulation is more than sufficient for all problems of engineering interest.  相似文献   

2.
Generalized Method for Three-Dimensional Slope Stability Analysis   总被引:2,自引:0,他引:2  
This paper describes an extension of a new three-dimensional (3D) stability analysis method, including formulation, comparative studies, and examples of new application. The new method uses “two-directional force and moment equilibrium” in the stability analysis of 3D potential failure mass with arbitrary shapes. The use of this new method has resulted in a novel situation wherein the direction of the resultant shear force (or direction of sliding) generated on the potential failure surface can now be calculated instead of the guesswork assumptions that were formerly made. It is also demonstrated that this new method eliminates the labor-intensive work for establishing local coordinate systems performed in conventional 3D analysis. Consequently, this new method facilitates a computer-aided 3D search for the critical failure surfaces in slope areas.  相似文献   

3.
Material Spatial Variability and Slope Stability for Weak Rock Masses   总被引:1,自引:0,他引:1  
The presence of weak materials, bedding, or discontinuities at critical locations could lead to local or large-scale failures of natural or excavated slopes or tunnels. Material spatial variation of Eagle Ford Shale in Texas was established based on laboratory and field testing results. A random field model was used to characterize the material spatial variation, and the correlation distance for the Eagle Ford Shale strength variability was evaluated. Impacts of material property variability and spatial variability on slope stability were analyzed using Monte Carlo simulation with distinct element modeling using random field elements implicitly embedded in the numerical analyses. This study provides insight into the significance of material spatial variation on stability, possible failure mechanisms, and critical locations of weak materials in a shale mass.  相似文献   

4.
Limit Analysis and Stability Charts for 3D Slope Failures   总被引:5,自引:0,他引:5  
The kinematic approach of limit analysis is explored in three-dimensional (3D) stability analysis of slopes. A formal derivation is first shown indicating that, in a general case, the approach yields an upper bound to the critical height of the slope or an upper bound on the safety factor. A 3D failure mechanism is used to produce stability charts for slopes. The slope safety factor can be read from the charts without the need for iterations. While two-dimensional (2D) analyses of uniform slopes lead to lower safety factors than 3D analyses do, a 3D calculation is justified in cases where the width of the collapse mechanism has physical limitations, for instance, in the case of excavation slopes, or when the analysis is carried out to back-calculate the properties of the soil from 3D failure case histories. Also, a 3D failure can be triggered by a load on a portion of the surface area of the slope. Calculations indicate that for the 3D safety factor of the loaded slope to become lower than the 2D factor for the same slope (but with a load-free surface), the load has to be very significant and equal to the weight of a soil column of the order 10?1 of the slope height.  相似文献   

5.
In this paper, by combining the geographic information systems (GIS) spatial analysis function and a hydrologic analysis and modeling tool with a column-based three-dimensional (3D) slope stability analysis model, a new GIS grid-based 3D deterministic model has been developed for slope stability analysis. Assuming the initial slip as the lower half of an ellipsoid, the identification of the 3D critical slip surface in the 3D slope stability analysis is performed by means of a minimization of the 3D safety factor using Monte Carlo random simulation. By using this hydrologic analysis and modeling tool, dividing the whole study area into slope units, and taking each slope unit as a study object, the minimum 3D safety factor for each slope unit can be obtained, and the landslide hazard can then be mapped for the whole study area.  相似文献   

6.
So far, earthquake-induced slope instability has been evaluated by force equilibrium of soil mass in engineering practice, which cannot evaluate failure deformation once large failure occurs. An energy approach is proposed here, in which the amount of earthquake energy is evaluated in conjunction with the gravitational potential energy dissipated in slope displacement including large flow deformations. Shake table tests of dry sand slopes are carried out in which the earthquake energy used for slope failure can be successfully quantified. Measured slope displacement can be reliably evaluated by the proposed energy approach based on a rigid block model if an appropriate friction coefficient of the slope is specified. The energy approach is then applied to hypothetical slopes, indicating that even if extremely large earthquake energy is considered, slope failures with long run-out distance will not occur unless friction coefficients reduce near to or smaller than slope inclinations.  相似文献   

7.
The growing popularity of the geographical information system (GIS), with capacities ranging from conventional data storage to complex spatial analysis and graphical presentation, means it is also becoming a powerful tool for geotechnical engineers. In this technical note, integrating the GIS grid-based data with four proposed column-based limit equilibrium models of three-dimensional (3D) slope stability analysis, new correspondent GIS grid-based 3D deterministic models have been devised in order to calculate the safety factor of the slope. Based on four GIS-based 3D slope stability analysis models, a GIS-based program, 3DSlopeGIS, has been developed to implement the algorithm where the whole of the input data is in the same form as the GIS dataset. Certain widely addressed examples have been evaluated using 3DSlopeGIS and the results show the correction and potential of this GIS-based tool as a means of assessing the 3D stability of a slope. A practical slope problem has also been evaluated using the 3DSlopeGIS system, and the results have illustrated the convenience of data management.  相似文献   

8.
Design of slopes and analysis of existing slopes subjected to seismic shaking are carried out routinely using approximations of plane strain and substitution of a quasi-static load for the seismic excitation. A three-dimensional (3D) analysis of slopes is carried out, based on the kinematic theorem of limit analysis. A rotational failure mechanism is used with the failure surface in the shape of a curvilinear cone sector passing through the slope toe, typical of steep slopes. A quasi-static approach is used to develop stability charts allowing assessment of the factor of safety of slopes without the need for an iterative procedure. The charts are of practical importance in cases of excavation slopes and whenever a slope is physically constrained, preventing a plane failure.  相似文献   

9.
Based on genetic algorithm and genetic programming, a new evolutionary algorithm is developed to evolve mathematical models for predicting the behavior of complex systems. The input variables of the models are the property parameters of the systems, which include the geometry, the deformation, the strength parameters, etc. On the other hand, the output variables are the system responses, such as displacement, stress, factor of safety, etc. To improve the efficiency of the evolution process, a two-stepped approach is adopted; the two steps are the structure evolution and parameter optimization steps. In the structure evolution step, a family of model structures is generated by genetic programming. Each model structure is a polynomial function of the input variables. An interpreter is then used to construct the mathematical expression for the model through simplification, regularization, and rationalization. Furthermore, necessary internal model parameters are added to the model structures automatically. For each model structure, a genetic algorithm is then used to search for the best values of the internal model parameters in the parameter optimization step. The two steps are repeated until the best model is evolved. The slope stability problem is used to demonstrate that the present method can efficiently generate mathematical models for predicting the behavior of complex engineering systems.  相似文献   

10.
罗一忠 《中国锰业》1998,16(3):9-12
用能量法对边坡稳定性的进行判别,导出有限元数值计算中用能量原理表示的边坡失稳条件;边坡系统的失稳与系统刚度矩阵的非正定性一致。对边坡工程实例的应用表明,在进行有限元计算的同时,用能量原理对边坡稳定性进行判别是可行的,其所得结论不仅与现场实际情况相符,还与极限平衡法得出的结论相一致,且比极限平衡法更加明确。  相似文献   

11.
This paper deals with the statistical analysis of the uniaxial compressive strength and of the elastic modulus of jointed rock masses under different confining pressures. Properties of the rock masses with different joint fabric, with and without gouge have been considered in the analysis. A large amount of experimental data of jointed rock masses from the literature has been compiled and used for this statistical analysis. The uniaxial compressive strength of a rock mass has been represented in a nondimensional form as the ratio of the compressive strength of the jointed rock to the intact rock. In the case of the elastic modulus, the ratio of elastic modulus of jointed rock to that of intact rock at different confining pressures is used in the analysis. The effect of the joints in the rock mass is taken into account by a joint factor. The joint factor is defined as a function of joint frequency, joint orientation, and joint strength. Several empirical relationships between the strength and deformation properties of jointed rock and the joint factor have been arrived at via statistical analysis of the experimental data. A comparative study of these relationships is presented. The effect of confining pressure on the elastic modulus of the jointed rock mass is also considered in the analysis. These empirical relationships are incorporated in a nonlinear FEM code to carryout the equivalent continuum analysis of jointed rock masses. The method presented in this paper recognizes that the jointed rock mass will act both as an elastic material and a discontinuous mass. The results obtained by the model with equivalent properties of the jointed rock mass predict fairly well the behavior of jointed rock mass.  相似文献   

12.
Numerical Analysis of Rainfall Effects on Slope Stability   总被引:7,自引:0,他引:7  
The finite element analysis of transient water flow through unsaturated–saturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The results of the finite element analysis indicated that the hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration had significant influence on the water pressure in slopes, and thus on the stability of slopes under rainfall. The good comparisons of the numerical results with statistical and observational results showed the ability of the finite element analysis to evaluate the stability of slopes under rainfall.  相似文献   

13.
The anisotropic nature of response and degradation of shear strength from the undisturbed condition to the remolded state are two fundamental and challenging aspects of response in some clay deposits. This paper presents a comprehensive, yet flexible and practical, version of the SANICLAY model and its application to a seismic slope-stability problem. The model is based on the well-known isotropic modified Cam-Clay model with two additional mechanisms to account for anisotropy and destructuration. The model has been efficiently implemented in a three-dimensional (3D) continuum, coupled, dynamic, finite-difference program. The program has been used to analyze the seismic response of clay slopes to gain better insight into the role of the previously mentioned parameters in real applications. Different aspects of the model, including anisotropy and destructuration, and their effects on the earthquake-induced strains and deformations in the slope have then been explored and presented. By providing a link between the model parameters and the soil’s undrained shear strength, which is a well-known engineering parameter, a benchmark comparison has been made between the results of the present advanced model and those of an engineering approach. To this end, a modified Newmark sliding-block analysis has been used, in which the yield acceleration is gradually reduced as block sliding progresses during the earthquake. It is observed that although the two analyses display the same trends, the modified Newmark sliding-block method provides conservative results compared with those obtained from the developed simulation model.  相似文献   

14.
A new upper bound failure mechanism for the problem of rigid cylinder motion is presented. The velocity field associated with the mechanism is derived from a known elastic solution by similitude of the deformation field. The obtained upper bound value is 21% higher than the exact solution. However, the failure mechanism is continuous, involving no discontinuity, not even on the cylinder perimeter. The solution has a certain advantage if one, for example, wishes to combine its mechanism with a strain path approach to investigate the T-bar penetration problem. The absence of discontinuities in the mechanism also allows evolution of deformation under serviceability conditions, by associating a mobilized strength as a function of an average strain. Based on this approach, a load transfer function for lateral loading of piles in an undrained clay is suggested. This load transfer function involves nonlinear scaling of a stress-strain curve obtained from a triaxial compression test. An analytical, closed form, solution is given for the case of a hyperbolic stress-strain curve.  相似文献   

15.
在分析大新锰矿工业场地边坡施工情况的基础上,提出新的设计方案,并通过强度折减法的FLAC3D数值模拟的方法,计算了边坡的应力、位移、剪应变增量与速度矢量分析、塑性区和安全系数,在此基础上分析和讨论确定大新锰矿工业场地边稳定性较好,新的设计方案所设计的边坡符合技术规范的要求。在安全经济的基础上提出新的边坡设计方案:砂土台阶坡面角为38(°)、岩质台阶坡面角50(°)、清扫平台8 m、安全平台5 m、最终边坡角41(°)、并段台阶高度96 m。根据边坡稳定性分析的结果可以有效的指导边坡的设计方案制定和现场施工,确保施工方案安全可靠。  相似文献   

16.
The effects of boundary conditions on the stability of a river levee built on a low-permeability soil layer overlying a coarse-grained deposit were studied by using the finite-element method (FEM). The FEM analyses could predict stable or unstable levee conditions depending on the assumed distance between the levee and the external boundary of the mesh where the water table was assumed undisturbed. Possible causes of this notable drawback are discussed. The calibration of the numerical seepage model, through a back analysis of piezometer measurements, that could limit the observed boundary effects is suggested.  相似文献   

17.
To improve navigation conditions for barges passing through river channels, many submerged weirs (SWs) have been installed along the bendways of many waterways by the U.S. Army Corps of Engineers. This paper presents results from three-dimensional numerical simulations that were conducted to study the helical secondary current (HSC) and the near-field flow distribution around one SW. The simulated flow fields around a SW in a scale physical model were validated using experimental data. The three-dimensional flow fields around a SW, the influence of the SW on general HSC, and the implication of effectiveness of submerged weirs to realign the flow field and improve navigability in bendways were analyzed. The numerical simulations indicated that the SW significantly altered the general HSC. Its presence induced a skewed pressure difference cross its top and a triangular-shaped recirculation to the downstream side. The over-top flow tends to realign toward the inner bank and therefore improves conditions for navigation.  相似文献   

18.
Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme’s limitations.  相似文献   

19.
Most existing three-dimensional (3D) slope stability analysis methods are based on simple extensions of corresponding two-dimensional (2D) methods of analysis and a plane of symmetry or direction of slide is implicitly assumed. In this paper, 3D asymmetric slope stability models based on extensions of Bishop’s simplified, Janbu’s simplified, and Morgenstern–Price’s methods are developed. Under these new formulations, the direction of slide is unique and is determined from 3D force/moment equilibrium. Results from the new formulations are similar to the classical methods in normal cases but are numerically stable under transverse load. Further, the writers demonstrate that the present formulation is actually equivalent to the axes rotation formulation by Jiang and Yamagami but is much more convenient to be used for general problems. The writers have also discovered some inherent limitations of 3D limit equilibrium analysis which are absent in the corresponding 2D analysis.  相似文献   

20.
70 t 电弧炉炼钢集束射流氧枪流场的数值模拟及应用   总被引:2,自引:1,他引:1  
用CFX5.7.1 软件对电弧炉炼钢用集束射流氧枪和普通氧枪的射流特征进行了数值模拟和冷态试验。结果表明,集束射流氧枪比普通超音速氧枪射流长,射流集中、衰减慢。在鄂钢70 t Consteel电弧炉 上应用表明,使用集束氧枪后平均电耗由338 kWh/t降低到219 kWh/t,电极消耗未变,为1.86 kg/t,氧耗由 51.6 m³/t提高到60.3 m³/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号