首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用离子交换法以盐酸作为质子供体对海泡石进行酸化处理,用CTMAB对其进行改性。探讨了改性海泡石用量、时间、pH、温度、初始浓度等对Pb~(2+)吸附性能的影响。实验结果表明:经过酸处理和CTMAB改性海泡石对Pb~(2+)的吸附率提高了50%,且不受初始浓度的影响。  相似文献   

2.
制备了一种新型吸附剂——硫酸铁改性鸡蛋壳表面结构,利用扫描电镜、X荧光光谱、X射线衍射分析及X射线光电子能谱等手段对该吸附剂表面结构进行表征。结果表明,在鸡蛋壳的表面存在水合氧化铁,从而增加了吸附位点,增加了其对于Pb~(2+)的吸附效果。改性鸡蛋壳对Pb~(2+)的吸附机理通过模拟吸附一阶动力学模型和吸附等温线发现,其更加符合Langmuir单分子层吸附机制。改性鸡蛋壳对Pb~(2+)的吸附量可以翻倍,高达90.919mg/g,说明这种新型吸附剂的吸附效果较好。溶液pH值和添加吸附剂的含量对这种吸附剂吸附Pb~(2+)过程也有很大的影响,但是离子强度对其影响较小。因此,改性鸡蛋壳是一种有潜在应用价值的二次利用吸附材料。  相似文献   

3.
通过对天然海泡石磁化和精氨酸表面修饰,制备了一种氨基酸修饰的磁性海泡石(L-Arg-MSEP)。采用SEM、VSM、XRD、FTIR和BET方法对其结构进行表征和分析,对比在不同pH值、吸附剂投加量、时间、温度和初始浓度条件下,海泡石及其复合改性海泡石对水中Pb(2+)的吸附效率。结果表明,L-Arg-MSEP不仅具有超顺磁性,而且成功引入氨基,有利于提高其对Pb(2+)的吸附效率。结果表明,L-Arg-MSEP不仅具有超顺磁性,而且成功引入氨基,有利于提高其对Pb(2+)的吸附性能;在30℃,溶液pH为5.0,Pb(2+)的吸附性能;在30℃,溶液pH为5.0,Pb(2+)的初始浓度为200 mg/L,吸附剂投加量为2 g/L的最佳吸附实验条件下,L-Arg-MSEP对Pb(2+)的初始浓度为200 mg/L,吸附剂投加量为2 g/L的最佳吸附实验条件下,L-Arg-MSEP对Pb(2+)的最大吸附量为130.59 mg/g;L-Arg-MSEP对Pb(2+)的最大吸附量为130.59 mg/g;L-Arg-MSEP对Pb(2+)的吸附更符合准二级动力学模型和Langmuir等温吸附模型。吸附过程为自发的放热过程。  相似文献   

4.
通过对天然海泡石磁化和精氨酸表面修饰,制备了一种氨基酸修饰的磁性海泡石(L-Arg-MSEP)。采用SEM、VSM、XRD、FTIR和BET方法对其结构进行表征和分析,对比在不同pH值、吸附剂投加量、时间、温度和初始浓度条件下,海泡石及其复合改性海泡石对水中Pb~(2+)的吸附效率。结果表明,L-Arg-MSEP不仅具有超顺磁性,而且成功引入氨基,有利于提高其对Pb~(2+)的吸附性能;在30℃,溶液pH为5.0,Pb~(2+)的初始浓度为200 mg/L,吸附剂投加量为2 g/L的最佳吸附实验条件下,L-Arg-MSEP对Pb~(2+)的最大吸附量为130.59 mg/g;L-Arg-MSEP对Pb~(2+)的吸附更符合准二级动力学模型和Langmuir等温吸附模型。吸附过程为自发的放热过程。  相似文献   

5.
针对重金属污染严重威胁人类健康这一问题,文章使用改性蛭石研究了其对Pb~(2+)的吸附性能。将天然蛭石加入到一定浓度的CaCl_2溶液中,得到CaCl_2改性蛭石,从理论上阐述了改性方法的机理,提出最佳改性方案,并通过SEM表征其形貌特征。从蛭石用量、反应时间、溶液浓度、pH值等方面探讨了CaCl_2改性蛭石对Pb~(2+)的吸附效果。实验表明CaCl_2改性蛭石可以很好的用于Pb~(2+)的吸附处理。  相似文献   

6.
采用NaOH处理过的棉花秸秆去除废水中的Pb2+和Cu2+,探究不同因素对Pb2+、Cu2+的吸附效果的影响,确定最佳吸附工艺条件。结果表明,Pb2+最佳吸附条件为:投加量为33.33 g/L,振荡时间为110 min,吸附温度为25℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达92%;对Cu2+的最佳吸附条件为:投加量26.67 g/L,振荡时间为110 min,吸附温度为55℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达90.4%。  相似文献   

7.
改性硅藻土对水体中Pb~(2+)的吸附性能研究   总被引:1,自引:0,他引:1  
杨丹  谢玉娟 《广东化工》2010,37(11):24-25,29
用氢氧化钠对吉林长白硅藻土进行改性,并研究了改性硅藻土对Pb2+吸附性能,讨论了硅藻土用量、pH、吸附时间等因素对吸附效果的影响。结果表明:硅藻土改性后对Pb2+的吸附性能明显提高,改性硅藻土对Pb2+的去除率可达70%;pH是影响吸附效果的最主要因素,pH=5~6时吸附效果最佳;温度对吸附效果影响不大;在Pb2+初始浓度为50mg/L时,硅藻土用量以5~6g/L为佳。  相似文献   

8.
在N,N-二甲基甲酰胺中,以次磷酸钠为催化剂,采用柠檬酸对氢氧化钠处理过的玉米芯进行化学改性,制备得到生物吸附剂,并研究其对Pb~(2+)的吸附性能。通过探讨投加量、吸附时间、Pb~(2+)溶液的不同吸附温度、pH等因素研究改性玉米芯对废水Pb~(2+)吸附性能的影响。结果表明,改性的玉米芯投加质量为0.5 g、pH为7、Pb~(2+)初始质量浓度为100 mg/L时,吸附性能较好,吸附平衡时间t为120 min,最大吸附率为88.10%、最大吸附量为35.24 mg/g。可以用准二级动力学方程和Langmuir方程描述改性玉米芯的吸附过程。  相似文献   

9.
为研究以病死猪以炭化焚烧法制备的肉骨生物炭对水溶液中Pb~(2+)的吸附特性,分析了吸附时间、吸附剂用量、Pb~(2+)的初始含量等因素对吸附效果的影响。结果表明,对于50 mL质量浓度400 mg/L的Pb~(2+)溶液,当溶液初始pH为5.5、肉骨生物炭投加量为200 mg、吸附时间为240 min时,肉骨生物炭对Pb~(2+)的吸附效果达到最佳,吸附量为99.37 mg/g,Pb~(2+)去除率达到99%以上。肉骨生物炭对Pb~(2+)的动力吸附过程可以由准2级动力学模型很好地拟合;Langmuir方程描述的单分子层吸附模型能更好地拟合其等温吸附过程,饱和吸附量为106.4 mg/g。相比于玉米秸秆生物炭,肉骨生物炭对Pb~(2+)有更大的吸附容量和更快的吸附速率,是性能较好的Pb~(2+)吸附材料。  相似文献   

10.
通过将天然蛭石加入硫酸锌的碱性溶液中,制得纳米氧化锌改性蛭石,研究了该类改性蛭石对Pb~(2+)的吸附动力学和热力学效果,并得出以下结论:(1)纳米氧化锌改性蛭石对Pb~(2+)的吸附动力学可用准二级动力学方程描述;(2)对Pb~(2+)的吸附等温线均符合Langmuir和Freundlich方程;(3)pH在6~7时,对Pb~(2+)的吸附平衡量达48 mg/g;(4)对Pb~(2+)的吸附效果比天然蛭石好,平衡吸附量提高40%。实验表明,纳米氧化锌改性蛭石可以有效处理含铅废水。  相似文献   

11.
以羧甲基纤维素钠(CMC)为共聚骨架,丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸钠(AMPS)和2-丙烯酰胺基十四烷基磺酸钠(Na AMC14S)为接枝单体,过硫酸铵(APS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法合成了一种新型CMC-g-poly(AM-co-AMPS-co-Na AMC14S)高吸水树脂,并添加氢氧化钠(NaOH)与酰胺基发生水解反应,使得酰胺基(—CONH_2)变成羧酸根(—COO-)。通过单因素优选法筛选出树脂对Cu2+、Pb2+的最佳吸附条件。当pH为4、吸附时间为12 h、树脂质量分数为0. 01%时,CMC-g-poly高吸水树脂对Cu2+、Pb2+去除率可分别达到85. 89%、82. 09%,展示出极好的吸附性能。吸附动力学表明,该吸附过程受化学吸附控制。重金属离子可以有效地被CMC-g-poly树脂吸附。  相似文献   

12.
采用不同浓度的高锰酸钾溶液对甘蔗渣进行改性,并用扫描电镜(SEM)、傅里叶红外光谱仪(FTIR)和X射线衍射(XRD)对改性前后甘蔗渣的物化性能进行表征。研究了改性甘蔗渣对Pb~(2+)的吸附动力学和吸附等温线,并对吸附机理进行初步探讨。结果表明:改性甘蔗渣吸附Pb~(2+)的过程符合准二级动力学模型,改性甘蔗渣对Pb~(2+)的吸附等温线符合Langmuir方程;KMn O4(0.5 mmol/L)改性甘蔗渣的吸附机理为化学配位反应;KMn O4(30 mmol/L)改性甘蔗渣吸附Pb~(2+)的过程形成了内层表面络合物。  相似文献   

13.
以纤维素为原料,聚乙烯亚胺为氨基化试剂,选用环氧氯丙烷作为交联剂,制备了氨基改性纤维素气凝胶(Cell@PEI)。通过傅里叶红外光谱分析(FT-IR)、扫描电子显微镜分析(SEM)、X-射线衍射分析(XRD)和比表面积分析(BET)等表征手段对制得的吸附剂进行表征分析,证明成功制得了具有三维立体网状结构的氨基改性纤维素气凝。动力学吸附实验表明,Cell@PEI吸附Pb(2+)的过程以化学吸附为主导,遵循准二级动力学,在240min内可以达到吸附平衡。等温吸附实验结果表明,该吸附过程主要为单层吸附,吸附过程是吸热反应。此外,由等温拟合结果可知,在室温条件下,Cell@PEI对Pb(2+)的过程以化学吸附为主导,遵循准二级动力学,在240min内可以达到吸附平衡。等温吸附实验结果表明,该吸附过程主要为单层吸附,吸附过程是吸热反应。此外,由等温拟合结果可知,在室温条件下,Cell@PEI对Pb(2+)的饱和吸附容量为179.4 mg/g。Cell@PEI经过四次再生后,仍保持初始吸附量81.33%的吸附量,表明该吸附剂具有良好的循环使用性能。  相似文献   

14.
何彩梅  龚福明 《应用化工》2014,(4):658-661,665
以广西柑橘皮(OP)为原料,经乙醇、氢氧化钠皂化处理,得改性柑橘皮生物吸附剂(SOP),经乙醇、氢氧化钠、氯化镁皂化交联处理,得改性柑橘皮生物吸附剂(MgOP)。研究OP、SOP、MgOP对水溶液中Pb2+的吸附性能,并考察pH、温度、吸附时间、固液比4种因素对水溶液中Pb2+吸附率的影响。在此基础上,利用正交实验研究了MgOP对水溶液中Pb2+的最优吸附工艺条件。结果表明,MgOP对水溶液中Pb2+的最优吸附工艺条件为:pH 6,温度20℃,吸附时间60 min,固液比8 g/L。在此条件下,MgOP对水溶液中Pb2+的吸附率为97.4%。  相似文献   

15.
花生壳对Pb~(2+)的吸附特性研究   总被引:3,自引:1,他引:2  
以花生壳为吸附物质,研究了吸附pH值,吸附时间对3种不同产地花生壳吸附水溶液中Pb2+的影响,同时进行解吸研究。研究结果表明:在25℃,Pb2+的质量浓度为30mg/L条件下得出最佳吸附pH值为4.5,吸附平衡时间为30min。花生壳对Pb2+的吸附符合准二级动力学模型,Freundlich模型能很好的拟合等温吸附试验数据。吸附后的花生壳在600℃灼烧灰化回收,Pb2+的回收率达到93%以上。  相似文献   

16.
采用动态吸附法研究三聚磷酸二氢铝吸附Pb2+的动力学行为并进行吸附活化状态热力学参数分析。结果表明:当三聚磷酸二氢铝粒径小于150μm,搅拌转速大于200 r/min,Pb2+的初始质量浓度为500 mg/L时,三聚磷酸二氢铝对Pb2+的化学吸附反应符合二级反应动力学方程,吸附速率常数k与温度T之间的关系符合Arrhenius公式,吸附活化能Ea=29.34 kJ/mol,吸附频率因子A=62.25 L/(mg.min),ln(k/T)与1/T之间的关系符合Eyring公式,其活化焓ΔH=27.31 kJ/mol,活化熵ΔS=-217.55 J/(mol.K)。  相似文献   

17.
《应用化工》2022,(1):17-21
建立了普通橘子皮、Fe(Ⅲ)负载改性橘子皮对Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附过程,准二级动力学方程拟合结果R(2+)的吸附过程,准二级动力学方程拟合结果R2在0.999 4以上,说明吸附过程被化学吸附所控制。  相似文献   

18.
《应用化工》2020,(1):17-21
建立了普通橘子皮、Fe(Ⅲ)负载改性橘子皮对Pb~(2+)的吸附研究,采用原子吸收光谱仪测定Pb~(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb~(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb~(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb~(2+)的吸附过程,准二级动力学方程拟合结果R~2在0.999 4以上,说明吸附过程被化学吸附所控制。  相似文献   

19.
以废弃物柚子皮作为原材料,分别制备了未改性的柚子皮吸附剂、碱改性柚子皮吸附剂和疏基乙酸改性柚子皮吸附剂。比较它们对铅离子的吸附效率,并通过比较各种因素对吸附剂吸附铅离子效果的影响,得出最佳的吸附条件:温度为45℃、pH为4的巯基乙酸改性柚子皮吸附能力最佳。  相似文献   

20.
研究了活性污泥对重金属离子Pb2+的吸附特征。结果表明,当Pb2+的初始质量浓度为60mg/L时,Pb2+在活性污泥上吸附30min后基本达到平衡,吸附过程可以用准二级动力学方程来描述(R2=0.9994),平衡吸附量qe为50mg/g,准二级速率常数k2为0.0095g/(mg.min);吸附温度对吸附效果影响不大;pH值对吸附效果的影响很大,溶液pH值为3~4时吸附效果较好;活性污泥的投加量对吸附效果有很大的影响,在Pb2+的质量浓度一定的情况下随着污泥投加量的增加吸附效果反而减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号