首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
通过稳态法进行了控轧控冷(TMCP)型Q550高强钢在不同温度下的力学性能试验研究,得到常温及200~800℃9个不同高温下钢材的表观特征、应力-应变关系与基本力学性能参数,包括弹性模量、屈服强度、抗拉强度及断后伸长率.结果表明:应力-应变关系曲线在常温时有屈服平台而高温下没有,在超过300℃的高温下曲线形状不同;温度...  相似文献   

2.
为了研究高强Q960钢在火灾后的力学性能,对过火温度为300~900℃的高强Q960钢试件进行了稳态拉伸试验,得到其在自然冷却和浸水冷却条件下的应力-应变曲线、弹性模量、屈服强度和极限强度.结果表明:600℃是高强Q960钢强度发生明显变化的临界温度,将试验结果与普通Q235钢、Q345钢和高强Q460钢、Q690钢、S960钢进行比较,发现不同种类钢材经历高温后的力学性能退化程度并不相同;根据试验结果,建立了高强Q960钢高温后力学性能折减系数随温度变化的拟合公式,拟合结果与试验结果吻合较好.  相似文献   

3.
通过稳态拉伸试验法对国产超高强钢Q890在不同火灾高温条件下的力学性能进行了试验研究,得到高温下钢材的力学性能参数、应力-应变关系曲线和试验现象,并将所得试验结果与钢结构抗火设计规范及相关超高强钢研究文献中高温材料模型结果进行比较。分别采用多项式模型和钢材高温通用材料模型对试验结果进行数值拟合,建立高温下Q890钢力学性能参数的材料模型。结果表明:不同温度条件下的Q890钢试件在试验后有明显不同的外观特征,相应的应力-应变关系曲线基本形状差异较大;当受热温度低于500 ℃时,弹性模量和强度随温度升高逐步减小,断后伸长率变化不大;超过500 ℃后,弹性模量和强度下降速率明显加快,断后伸长率急剧增大;所建立的模型为研究Q890钢结构抗火性能及其计算方法提供理论基础。  相似文献   

4.
通过升温、冷却和拉伸试验,对历经300~900℃高温后的Q690钢材在自然冷却和浸水冷却条件下的力学性能展开试验研究。结果表明:经高温冷却的Q690钢材在不同温度和不同冷却方式下有不同的外观特征;受热温度超过500℃时,高温冷却对Q690钢材的弹性模量影响很小,对其强度和伸长率影响较大;当受热温度不超过700℃时,Q690钢材高温后的强度和伸长率在两种冷却方式下具有基本相同的变化规律;在700~800℃之间,不同冷却方式对Q690钢材高温后强度和伸长率产生影响,且随温度升高差别愈加明显,自然冷却条件下强度降低且伸长率增大,浸水冷却条件下强度增大且伸长率减小。将Q690钢材高温后力学性能与Q235钢材和Q460钢材比较,认为不同强度等级钢材高温后的力学性能差别显著,在自然冷却条件下较高强度钢材(Q690)的强度衰减和延性增长大于较低强度钢材(Q235和Q460)的。根据试验结果,建立了不同冷却条件下的高温后各力学参数与受热温度之间的数学模型,该模型可用于火灾后Q690钢结构的承载能力的评估。  相似文献   

5.
服役结构材料疲劳损伤后的残余力学性能对结构可靠性的评估有着至关重要的作用。为此,对Q690高强钢经不同疲劳损伤后的残余力学性能进行了试验研究。根据Q690高强钢在不同疲劳荷载作用下的疲劳寿命,设定了3级疲劳荷载和9组损伤振动次数,并将Q690高强钢试件在各疲劳荷载下进行不同次数的预损伤疲劳振动。然后,对这些具有不同疲劳损伤的试件进行静力拉伸试验,观察试件的断裂模式并获得应力-应变曲线,对比分析具有不同疲劳损伤试件的屈服强度、抗拉强度和伸长率等力学性参数的变化规律。结果表明:Q690高强钢经疲劳损伤后的断口位置和截面形貌均发生明显变化;疲劳损伤后Q690高强钢在静力拉伸作用下的应力-应变关系曲线均无屈服平台,拉伸过程中出现位移不变、拉力突然减小的卸载现象,造成应力-应变关系曲线出现振荡;Q690高强钢的弹性模量受疲劳损伤影响相对较小,但是屈服强度、抗拉强度、伸长率、屈服应变和极限应变却随疲劳损伤增加而减小。根据试验结果,建立了Q690高强钢力学性能参数与疲劳损伤之间的拟合公式,利用该公式可对具有不同疲劳损伤的Q690高强钢结构的力学性能进行有效评估。  相似文献   

6.
为研究热冲压球壳Q235钢材高温后的力学性能,对经历400~900℃高温后由自然冷却和喷水冷却到常温空心球加工制作成的受拉试样进行拉伸试验,得到高温冷却后该材料的应力-应变曲线、弹性模量、屈服强度、抗拉强度和断后伸长率,并与普通Q235钢高温后力学性能进行了对比。研究结果表明:当经历温度不超过500℃时,钢材高温后强度与断后伸长率在两种冷却方式下变化规律基本类似,且变化很小。当经历温度超过500℃后,不同冷却方式对材料高温后强度与断后伸长率产生明显影响,且温度越高,相差越大,自然冷却方式下,随着温度的升高,强度降低而断后伸长率变大。喷水冷却方式下,抗拉强度增大而伸长率减小,屈服强度在500~700℃之间逐渐增大,700℃之后又快速下降。弹性模量受经历温度与冷却方式的影响较小。  相似文献   

7.
高温后Q235钢材力学性能试验研究   总被引:5,自引:0,他引:5  
通过对高温后Q235钢材力学性能的试验研究,描述了高温后钢材的表面特征,探讨了钢材受热温度和恒温时间对高温后钢材力学性能的影响,并建立了高温后钢材屈服强度-受热温度、极限强度-受热温度、泊松比-应力比和拉伸应力-应变关系曲线拟合方程.试验表明:随着受热温度的升高,高温后钢材的屈服强度、极限强度整体上呈降低趋势,而弹性模量和泊松比则基本不变;恒温时间对力学性能的影响不太明显;所拟合的高温后钢材屈服强度—受热温度、极限强度—受热温度、泊松比—应力比和拉伸应力—应变关系曲线方程均与实测结果吻合较好.  相似文献   

8.
为评估经历火灾的钢结构剩余抗震性能,需要明确火灾后结构钢材超低周疲劳性能。以受火温度、冷却方式和疲劳应变幅为变量,对23组高温后的Q690高强钢进行了超低周疲劳试验,获得了高温后Q690高强钢的疲劳寿命和循环应力-应变曲线。在此基础上,分析了Q690高强钢的超低周疲劳性能以及耗能能力,讨论了火灾后Q690高强钢的超低周疲劳破坏形态,并对其微观金相组织进行了观测,讨论了微观组织对超低周疲劳性能的影响。结果表明:高温后Q690高强钢仍具有良好的耗能能力,其循环应力-应变曲线呈现出饱满的梭形;经历600℃后自然冷却可以起到回火的效果,使Q690高强钢的疲劳寿命较常温的提高了23.4%;经历900℃高温后,冷却方式对Q690高强钢的峰值应力影响显著,浸水冷却的Q690高强钢的峰值应力是自然冷却的1.77倍;高温后Q690高强钢金相组织发生变化并影响其超低周疲劳性能;除经历900℃浸水冷却的Q690高强钢外,断口可以观察到明显的疲劳源、疲劳弧线和瞬断区,疲劳应变幅的增加使疲劳弧线间距增大。  相似文献   

9.
HRBF500钢筋高温后力学性能试验研究   总被引:1,自引:0,他引:1  
通过拉伸试验,研究20,100,200,300,400,500,600,700,800,900,1 000℃高温冷却后HRBF500钢筋屈服强度、极限强度、弹性模量、延伸率和受拉应力-应变关系的变化规律。结果表明,高温冷却后细晶钢筋,温度历程低于500℃时,钢筋的力学性能变化不明显;高于500℃时,随温度历程的升高,钢筋的应力-应变关系曲线逐渐软化,钢筋的各项力学指标逐渐退化。基于试验数据,提出了高温后500 MPa细晶粒钢筋屈服强度、极限强度和弹性模量随温度变化的计算公式,为开展细晶粒钢筋结构抗火性能分析及火灾后损伤评估提供基础性素材。  相似文献   

10.
《工业建筑》2021,51(8):184-189,125
在周期性浸润和湿热环境下对Q690高强钢进行0~100 d的加速腐蚀试验,通过单轴拉伸试验研究了钢材力学性能的退化规律,采用二次塑流模型建立了锈蚀试件的应力-应变退化本构模型,得到了参数s_1、s_2随腐蚀时间变化的关系,对锈蚀试件进行有限元模拟,并与试验结果进行对比分析。结果表明:由于腐蚀的不断增加,Q690高强钢的屈服强度、抗拉强度和断后伸长率等力学性能指标都有不同程度的下降,弹性模量在腐蚀前期变化不明显,而腐蚀后期最大下降10.2%。所采用的二次塑流模型能较好地反映腐蚀钢材的本构关系,有限元模拟锈坑对钢材的剥削能较好地反映锈蚀高强钢材的承载力退化规律,与试验结果吻合较好。  相似文献   

11.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。  相似文献   

12.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。  相似文献   

13.
高温后HRBF500细晶粒钢筋力学性能试验研究   总被引:4,自引:1,他引:3  
试验研究了16组共48根HRBF500细晶粒钢筋在常温和高温冷却作用后(5种温度、3种冷却方式)的力学性能,得到了不同高温冷却作用后细晶粒钢筋的应力-应变关系,分析了屈服强度、抗拉强度、弹性模量、断后伸长率、均匀伸长率、截面收缩率等的变化规律。试验表明:温度作用相对较低时(300℃、400℃、600℃),细晶粒钢筋力学性能变化不明显;温度作用相对较高时(700℃、900℃),细晶粒钢筋各项力学指标逐渐退化。根据试验结果,经回归分析建议了高温后细晶粒钢筋屈服强度、抗拉强度、弹性模量、断后伸长率的计算公式。研究成果可作为火灾后采用HRBF500级细晶粒钢筋混凝土结构的损伤评估的依据。图12表6参7  相似文献   

14.
为研究Q690D高强度钢材及焊缝连接件在常温和高温后的断裂性能,选取代表实际梁柱节点局部焊接构造的十字形焊接节点试样,完成了常温和一系列高温后Q690D钢材和ER80-G焊缝金属的单轴拉伸试验,得到了钢材和焊缝金属在不同高温后的弹性模量、屈服强度、极限强度和延伸率。开展了常温和高温后十字形焊接接头的单调拉伸试验和超低周循环试验,研究了Q690D高强度焊接接头的断裂机理,探讨了过火温度、加载制度对焊接接头断裂性能的影响。结果表明:当钢材和焊接接头的过火温度高于600 ℃时,钢材和十字形焊接接头的强度降低,其变形能力开始增大; 800 ℃高温后Q690D钢材的强度降低,但ER80-G焊缝金属的力学性能无明显变化,导致焊接接头经受800 ℃高温后,在单调荷载作用下,其断裂破坏未发生在焊缝处,而发生在母材位置; 循环荷载作用下焊接接头的承载能力和变形能力都低于单调荷载的情况; 试验得到钢材、焊缝金属和焊接接头的力学性能指标,为发展考虑火灾后效应的断裂分析模型提供了基础试验数据。  相似文献   

15.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号