首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
晚期垃圾渗滤液实现短程硝化影响因素分析   总被引:7,自引:1,他引:6  
利用SBR反应器,探讨了溶解氧(DO)、温度和pH值对晚期垃圾渗滤液实现短程硝化的影响.结果表明:DO质量浓度为0.75 mg/L左右时,短程硝化效率较高,大于该值时硝化类型有向全程硝化转变的趋势,低于该值时最大氨氧化速率下降较大;当DO质量浓度保持在0.75 mg/L左右时,降低温度和pH值,最大氨氧化速率下降,但亚硝氮积累率仍保持在较高水平.低溶解氧情况下,由于DO的抑制作用,硝酸菌没有表现出较亚硝酸菌更适应较低温度或pH值环境的特性,DO是实现晚期垃圾渗滤液短程硝化的控制因素.当DO为0.75 mg/L左右,pH值为6.5~8.0,温度为25~27℃时,可以达到96%以上的氨氮去除率及98%以上的亚硝氮积累率,在此条件下最大氨氧化速率为0.097~0.12 g/(gVss.d).  相似文献   

2.
短程硝化反硝化生物脱氮技术   总被引:20,自引:3,他引:17  
为防止湖泊和其他受纳水体富营养化的发生,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷.随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高.短程硝化反硝化技术应用于处理高氨氮质量浓度和低C/N比污水时,在经济上和技术上均具有较高的可行性.成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化.从不同角度对成功实现、维持和应用短程硝化反硝化技术的方法进行探讨,主要包括控制DO质量浓度、调节污泥龄、反应温度、系统pH、底物负荷、工艺运行方式、抑制剂等.  相似文献   

3.
在温度21 ~23℃时,通过考察溶解氧(DO)对短程硝化快速启动的影响发现,ρ(DO)为0.25 ~ 1.25 mg/L时均能启动短程硝化,其中0.25 ~0.75 mg/L属于实现短程硝化快速启动的ρ(DO)范围;ρ(DO)为0.25 ~0.50 mg/L与0.50 ~0.75 mg/L对快速启动的效果相当,主要是因为当ρ(DO)为0.25~0.50 mg/L时,虽然氨氧化菌(AOB)的竞争优势更加显著,但是AOB自身利用基质倍增所需的时间却会增大.在短程硝化的运行阶段,当ρ(DO)较高(1.50 ~ 1.75 mg/L)时,可以通过间歇性大幅降低ρ(DO)至0.50~0.75 mg/L的方法实现短程硝化的长期稳定运行.对稳定运行后期的污泥样品进行微生物分析,总细菌通用引物分析结果表明:AOB、亚硝酸盐氧化菌(NOB)占总细菌的比例分别为22.50%、3.75%,其中,亚硝化单胞菌属(Nitrosomonas sp.)是AOB的优势菌属,比例高达总细菌的17.50%.  相似文献   

4.
DO和HRT对MBR同步硝化反硝化影响研究   总被引:15,自引:1,他引:14  
通过连续运行MBR研究了DO和HRT对同步硝化反硝化的影响,同时对好氧反应器中实现SND的机理进行了探讨.试验结果表明:COD在250 mg/L左右,C/N为10∶1,MLSS为3500 mg/L,HRT为8.5h的相对稳定条件下,当DO为0.6~0.8 mg/L时,总氮去除率达66.7%,取得了最好的TN去除效果,DO过高或过低都会影响同步硝化反硝化的进行;控制DO在1.0 mg/L左右,其他操作条件相同,HRT为5 h,TN去除率达到最高为60%以上,随HRT的延长,同步硝化反硝化效果反而下降;研究结果还表明由于好氧反应器中缺氧区的存在,控制操作条件可以实现SND,同时也存在着短程SND的现象,实现SND可能是几种作用机制的共同结果.  相似文献   

5.
DO对SBR短程硝化系统的短期和长期影响   总被引:2,自引:0,他引:2  
采用实际的生活污水,在SBR反应器内分别考察了溶解氧(DO)对短程硝化效果及污泥种群结构的短期和长期影响.结果表明,通过采用实时控制曝气时间,高ρDO(ρ(DO)=(3±0.5)mg/L)与低ρDO(ρ(DO)=(0.5±0.1)mg/L)条件下SBR系统的亚硝酸盐积累率均能达到90%以上,而低ρDO相对于高ρDO更利于提高系统的同步硝化反硝化(SND)效果,两者的平均同步硝化反硝化率(SND率)分别为45.5%和9.5%,低ρDO下最高SND率达86%.FISH的检测结果表明,实时控制模式下反应器内亚硝酸氧化菌(NOB)逐渐被淘洗,而氨氧化细菌(AOB)变为优势硝化菌群.在高ρDO运行末期,稳定的短程污泥中AOB和NOB的相对数量分别为8%~10%和不足0.5%;在低ρDO运行末期,AOB数量出现了微弱上升,增至10%~12%,而NOB进一步被淘汰,基本检测不出.可见,采用好氧曝气时间实时控制,能对短程硝化系统内污泥种群起到优化作用,且在高、低ρDO下均能实现稳定的短程硝化效果,而低ρDO更有利于系统内亚硝酸氧化菌(NOB)的淘洗、短程硝化率的提高以及系统SND效果的加强.  相似文献   

6.
垃圾渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染,研发高效可行的渗滤液处理工艺具有重要意义.通过建立"缺氧(A)/好氧(O)/膜生物反应器(MBR)+反渗透(RO)"中试设备,现场处理实际垃圾渗滤液,探讨进水浓度和温度条件对垃圾渗滤液中污染物去除影响,考察"A/O/MBR+RO"工艺处理垃圾渗滤液的工艺可行性.结果表明:该工艺在冬季时(5~15°C)对COD、NH_3-N、TN去除率仍可达60%、63%和47%左右.冬季低温时,MBR出水中含有一定的NO_2-N,而此时COD满足不了完全反硝化需求,初步说明可能存在一定的短程硝化反硝化.对MBR出水进行RO深度处理后,出水中NH_3-N、COD和TN等水质指标均达到《生活垃圾填埋场污染控制标准》(GB16889-2008)要求.  相似文献   

7.
针对污水生物脱氮过程低C/N的问题,采用淀粉基可生物降解载体进行生物膜脱氮研究,考察了pH、DO、温度等因素对同步硝化反硝化的影响。结果表明:在C/N=4时,淀粉基可生物降解载体可以为反硝化菌提供充足的有机碳源。在pH=8~8.5、DO=1 mg/L、T=28℃时,氨氮及总氮去除率分别可以达到93%和76%。  相似文献   

8.
为了考察短程硝化反硝化的影响因素,对短程硝化反硝化快速启动和稳定运行的影响因素,采用实时控制手段研究。结果表明:通过DO和pH联合实时控制,低DO条件下可以实现短程硝化反硝化快速启动。启动成功的短程硝化污泥,过度曝气对NO2^--N积累影响较大。合理控制曝气时间,应用实时控制策略,控制NH4+-N刚刚氧化完成时停止曝气,可保证NH4^+-N完全氧化,防止NO2^--N进一步氧化。实时控制可实现短程硝化,而且可以维持短程硝化稳定运行。  相似文献   

9.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

10.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明:组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

11.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

12.
UASB反应器预处理高浓度NH4+-N废水,采用较低的C/N,降低后续处理的NH4+-N负荷.在反应器内部进行短程硝化与反硝化,经过75 d的实验得出,反应器内的最佳控制条件:温度20~30℃,pH值7.0~8.0,C/N3.5~4.5.NH4+-N浓度在500 mg/L左右,去除率达到40%,并且反应器运行稳定,可以作为对高浓度NH4+-N废水的预处理.  相似文献   

13.
采用MUCT工艺处理低ρ(C)/ρ(N)比实际城市生活污水,研究在短程硝化稳定运行的基础上实现亚硝酸型同步硝化反硝化(simultaneous nitrification and denitrification,SND).反应器在(28±2)℃下运行177 d,试验结果表明:通过控制溶解氧(DO)质量浓度为0.3~0.6 mg/L、水力停留时间(HRT)为6 h实现了短程硝化,亚硝酸盐积累率(nitrite accumulation rate,NAR)达到90%以上,短程硝化反硝化稳定运行118 d.在短程硝化的基础上,好氧区低氧运行实现了亚硝酸型SND,通过亚硝酸型SND途径的总氮去除率平均33%,最高达到56%.亚硝酸型SND途径下氨氮、总氮、磷的去除率明显提高,无外加碳源时分别达到99%、83%和96%.因此,MUCT工艺实现亚硝酸型SND是低碳源污水处理的一种有效的运行方式,能充分利用原水中的有机碳源,总氮去除率的提高和碳源的节省保证了磷的去除效果.  相似文献   

14.
为了解决垃圾渗滤液在无外加碳源的条件下难以实现高效生物脱氮的问题,采用中试规模的A/O-MBR反应器,通过实现短程硝化反硝化去除垃圾渗滤液中的高浓度有机物和氮化物,并考察反应器系统对水质变化的适应能力以及不同进水碳氮比时的去除效果.实验结果表明:在进水氨氮质量浓度为1 500 mg/L、碳氮比为2∶1、水力停留时间(HRT)为4.21 d的条件下,COD和TN去除率均达到80%以上,说明系统实现了低碳氮比垃圾渗滤液高效生物脱氮.  相似文献   

15.
针对污水生物脱氮过程低C/N的问题,采用淀粉基可生物降解载体进行生物膜脱氮研究,考察了pH、DO、温度等因素对同步硝化反硝化的影响。结果表明:在C/N=4时,淀粉基可生物降解载体可以为反硝化菌提供充足的有机碳源。在pH=8-8.5、DO=1mg/L、T=28℃时,氨氮及总氮去除率分别可以达到93%和76%。  相似文献   

16.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

17.
目的碳氮比是影响短程硝化反硝化生物脱氮工艺系统的主要因素之一,为了找到适合短程硝化反硝化的ρ(C)/ρ(N).方法采SBR反应器,用传统活性污泥作为种泥驯化污泥,以模拟生活污水为处理对象,进行动态试验并通过改变系统的ρ(C)/ρ(N),考察ρ(C)/ρ(N)对系统典型周期中氮元素的变化、NO2^--N积累率的影响及系统运行周期内氮的缺失原因.结果试验表明,系统稳定运行期间,ρ(C)/ρ(N)=4.37时,氨氮去除率为80.59%,亚硝酸盐氮的积累率为87.31%;ρ(C)%;ρ(N)=6.1时,氨氮去除率为82.8%,亚硝酸盐氮的积累率为88.45%;ρ(C)/ρ(N)=8.2时,氨氮去除率为72.5%,亚硝酸盐氮的积累率为77.65%.结论短程硝化反硝化所需的ρ(C)/ρ(N)不是越高越好,它应该控制在6左右.  相似文献   

18.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

19.
碳源对晚期垃圾渗滤液短程硝化的影响   总被引:1,自引:0,他引:1  
为了考察碳源对晚期垃圾渗滤液短程硝化的影响,采用"两级UASB-缺氧-好氧系统"处理城市生活垃圾晚期渗滤液.系统进水COD质量浓度为4.3g/L左右,进水氨氮质量浓度为2.8 g/L,故COD与氨氮质量浓度之比很低,为1.5左右.首先在UASB1中实现同时反硝化与产甲烷反应,一部分COD在UASB2中进一步去除,在A/O反应器中利用残余COD进行反硝化以及NH_4~+-N的彻底硝化.试验结果表明,未投外加碳源时,原水中可降解COD几乎全部作为一级UASB的反硝化碳源被利用,A/O池缺氧段反硝化碳源不足.在A/O池的A段投加相当于1 g/L COD质量浓度的无水乙酸钠作为电子供体促进反硝化后,由于反硝化产生大量的碱度,补充了硝化所消耗的碱度,使pH值维持在一个比较合适的范围,可实现稳定的短程硝化,亚硝态氮累积率由未投加碳源时的20%提高到87%,系统出水氨氮质量浓度为0.01 g/L左右,氨氮的去除率也由未投加碳源时的92%提高到99.6%.  相似文献   

20.
在SBR反应器中利用游离氨(freeammonia,FA)、游离亚硝酸(freenitrousacid,FNA)对NOB(nitriteoxidizingbacteria,NOB)选择性抑制并耦合实时控制策略处理晚期垃圾渗滤液,成功实现持久稳定的短程生物脱氮,并研究了不同碳氮比及初始PH值对短程生物脱氮的影响。结果表明:通过FA和FNA对NOB的选择性抑制,在线检测反应中PH、DO和ORP数值,利用出现的“氨谷”、“ORP平台”“亚硝酸盐膝”等特征点作为运行操作控制时间点,准确得知反应进程,及时开始下一步操作,获得稳定短程生物脱氮。进水NH4+-N浓度为108~177.3mg/L(平均值为138.7mg/L)时,亚硝积累率一直稳定达90%左右,乙酸钠为碳源时最佳C、N质量比为3,相对于混合液悬浮固体浓度的反硝化速率的平均值达到19.8mg·g-1·h-1NOx--N,出水NH3+-N、NO2--N、NO3--N、TN分别小于6、2、1和30mg/L;初始PH值为8.5时,反硝化速率最大,pH介于7.5~8.5间,反硝化速率差异小于7.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号