首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
制备了聚磷钨酸/壳聚糖-乙炔黑修饰电极(p-PTA/CS-AB/GCE),采用循环伏安法(CV)研究了氯霉素在该修饰电极上的电化学行为。结果表明,在p H 6.0的PBS溶液中,氯霉素(CAP)在该修饰电极上出现1个还原峰,在40~400 m V/s扫速范围内,CAP的还原峰电流与扫速呈线性关系,说明CAP在修饰电极上的电化学反应过程是受吸附控制的不可逆过程。用差分脉冲伏安法(DPV)对不同浓度的CAP进行检测,在5.0×10-7~1.0×10-4mol/L浓度范围内,还原峰电流与浓度呈线性关系,检出限(S/N=3)为5.13×10-8mol/L。用该方法对氯霉素片进行检测,相对标准偏差(RSD)为1.4%,回收率为97.7%~105.1%。  相似文献   

2.
采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol·L-1范围内成线性关系,检测下限为2.3×10-7mol·L-1(S/N=3)。该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。  相似文献   

3.
通过电聚合和电沉积方法首次制得聚(三聚氰胺)和金纳米粒共修饰的电极(PMel/Au/GCE),并对修饰电极进行交流阻抗电化学分析。采用循环伏安法研究了芦丁在修饰电极上的电化学行为,发现其氧化峰电流和还原峰电流较裸玻碳电极(GCE)以及聚(三聚氰胺)修饰的电极(PMel/GCE)明显增强,提高了检测的灵敏度。对溶液的pH值、金纳米粒子电沉积时间、三聚氰胺电聚合时间和扫描速率等实验条件进行了优化。采用示差脉冲伏安法对芦丁进行定量分析,芦丁浓度分别在7.8×10-9~1.2×10-6mol/L和1.2×10-6~1.5×10-5mol/L范围内与峰电流呈线性,其相关系数(r2)分别为0.997和0.993,检出限(S/N=3)为5.5×10-9mol/L。将该电极用于市售芦丁片检测,回收率为96.4%~101.8%。  相似文献   

4.
利用多电位脉冲沉积法制备纳米金修饰电极(AuNPs/GCE),再将L-精氨酸电聚合在AuNPs/GCE表面,制备出一种新型的聚L-精氨酸/AuNPs/GCE。采用原子力显微镜对上述电极进行了表征,并研究了多巴胺在其上的电化学行为。结果表明:在pH 5.7的磷酸盐缓冲溶液中,聚L-精氨酸/AuNPs/GCE对多巴胺的氧化有良好的电催化作用,多巴胺的氧化还原反应是受吸附控制的准可逆过程。多巴胺的浓度在8.0×10-7~1.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)为1.0×10-7 mol·L-1。加标回收率在96.5%~104%之间。对3.0×10-5 mol·L-1多巴胺溶液连续测定7次,峰电流的相对标准偏差为2.6%。  相似文献   

5.
研究了聚磺基水杨酸/多壁碳纳米管修饰玻碳电极的制备及多巴胺在此修饰电极上的电化学行为, 讨论了修饰条件、扫速、溶液 pH 以及抗坏血酸的干扰对多巴胺在这种复合物电极上响应的影响. 在 pH 7.4 磷酸盐缓冲溶液中, 在1.0×10-3 mol/L 抗坏血酸共存的条件下, 多巴胺氧化峰电流与其浓度在 5×10-7~10-4 mol/L 范围内分段呈线性关系, 检出限为 1.0×10-7 mol/L. 结果表明: 聚磺基水杨酸/多壁碳纳米管修饰电极结合了多壁碳纳米管灵敏度高和聚磺基水杨酸选择性好的优点, 可用于抗坏血酸共存条件下多巴胺的测定.  相似文献   

6.
应用电聚合的方法以4-氨基丁酸(4-ABA)为修饰剂,将4-ABA聚合在玻碳电极(GCE)表面,制得聚4-氨基丁酸修饰电极(P-4-ABA/GCE),并用于多巴胺(DA)的检测。在pH 5.0的磷酸盐缓冲液(PP)中,DA在0.488V处出现一灵敏的氧化峰,氧化峰电流与DA浓度在9.1×10-8~6.7×10-5mol/L范围内呈现线性关系。检出限为3.0×10-8mol/L。制备的修饰电极,可应用于针剂中多巴胺含量的测定。  相似文献   

7.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

8.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极( PMB/GH/GCE).采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为.在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV.研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定.在1.00×10-3 mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10--7~5.00×10-3 mol/L范围内呈良好的线性关系,检出限达1.00 × 10-6mol/L.将该方法用于盐酸多巴胺注射液的测定,结果满意.  相似文献   

9.
制备了纳米NiO-还原石墨烯复合修饰电极(NiO-rGO/GCE),并用于多巴胺(DA)的检测。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了DA在该修饰电极上的电化学行为。结果表明,在pH=7.0的磷酸盐缓冲溶液(PBS)中,该修饰电极对DA有良好的催化作用。DA浓度在5.0×10-7~3.2×10-5 mol/L范围内与氧化峰电流呈良好的线性关系,检出限为3.8×10-8 mol/L。用该修饰电极直接测定了血清中DA含量,回收率在97.8%~101.1%之间。  相似文献   

10.
电沉积纳米ZnO修饰玻碳电极交流阻抗法测定硫离子   总被引:1,自引:0,他引:1  
以Zn(NO3)2和KCl为支持解液,在裸玻碳电极(GCE)上电化学沉积一层纳米Zn O薄膜,制备出一种基于纳米Zn O修饰电极(Zn O/GCE)用于检测S2-的电化学传感器。电化学循环伏安法(CV)表明该修饰电极具有大的比表面积及良好导电性能。将Zn O/GCE置于微酸性的Na2S(p H 6.5)溶液中进行富集反应12 min后,可得到恒定的电化学交流阻抗值(Ret)。在最优实验条件下,该制备电极可成功应用于检测不同浓度的Na2S溶液,其ΔRet值与Na2S浓度范围(1.0×10-7~1.0×10-3mol/L)的对数呈良好的线性关系,检出限为6.37×10-8mol/L。制备电极(Zn O/GCE)可应用于实际水样中硫化物的检测。  相似文献   

11.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

12.
利用电化学还原方法制备纳米金/石墨烯修饰玻碳电极,研究了多巴胺(DA)在该修饰电极上的电化学行为,建立了电化学测定多巴胺的新方法。结果表明,在磷酸盐缓冲溶液中,此修饰电极对多巴胺的电化学响应具有很好的催化作用。利用差示脉冲伏安技术对多巴胺的电化学氧化进行定量分析,多巴胺的氧化峰电流与其浓度在1.0×10-7~1.0×10-5mol/L范围内呈良好的线性关系,检测限低至4.0×10-8mol/L。该修饰电极适于多巴胺的分析检测。  相似文献   

13.
多壁碳纳米管修饰玻碳电极伏安法测定氯霉素   总被引:1,自引:0,他引:1  
研究了氯霉素(CAP)在多壁碳纳米管修饰玻碳电极上的电化学行为.发现在pH=2.0的0.1 mol/LKCl-HCl底液中,CAP在该修饰电极上有一灵敏的还原峰(Ep=-0.36 V vs.Ag/AgCl),峰电流与CAP浓度成正比,线性范围为6.0×10-6~2.7×10-4mol/L,检测限达3.0×10-6mol/L.该方法灵敏、准确,用于模拟样品和实际样品的测定,结果满意.  相似文献   

14.
研究了纳米金/双氢氧化物膜修饰玻碳电极(AuNPs/LDHs/GCE)的制备,通过循环伏安法、扫描电镜和电化学阻抗对修饰电极进行了表征;详细讨论了电极的性能,找出了制备该修饰电极的实验条件,并将此电极用于生物体系中肾上腺素(Adrenaline,AD)的电化学测定.在选定的实验条件下,修饰电极在磷酸盐缓冲溶液(pH=7.0)中进行循环伏安扫描时,氧化峰电流和肾上腺素浓度在9.0×10-8~1.0×10-4mol/L范围内呈良好的线性关系,相关系数为0.9982,其检出限(S/N=3)可达3.1×10-8 mol/L.据此建立了一种新的测定肾上腺素的分析方法,可用于实际样品的检测.  相似文献   

15.
The development of a quercetin‐graphene composite‐modified glassy carbon electrode (Qu/GH/GCE) for the selective and sensitive detection of dopamine (DA) is described in this paper. To fabricate the Qu/GH/GCE, graphene (GH) was first coated onto the surface of a glassy carbon electrode (GCE) and then quercetin (Qu) was electrodeposited on the GH matrix. Transmission electron microscopy (TEM) was used to characterize the morphology of the obtained GH and Qu/GH, and the electrochemical properties of the modified electrode were studied using electrochemical techniques. The as‐prepared Qu/GH/GCE occupied a synthetic property between GH and Qu. The common overlapped electrochemical oxidation peaks of DA and AA were completely separated and a remarkable increasing electron‐oxidation current of DA occurred on the Qu/GH/GCE, which enabled the sensitive and selective electrochemical detection of DA in the presence of ascorbic acid (AA) with peak difference of ca. 452 mV between DA and AA. The peak current obtained at 0.174 V (vs. saturated calomel electrode, SCE) from differential pulse voltammetry (DPV) is linearly dependent on the DA concentration in the range from 3.0×10?8 to 4.0×10?4 mol/L with a detection limit of 1.0×10?8 mol/L. Furthermore, the Qu/GH/GCE exhibits good reproducibility and stability, and has been used for the determination of DA in samples of rat’s striatum tissue with satisfactory results.  相似文献   

16.
采用循环伏安法研究了多巴胺(DA)在聚对硝基苯偶氮间苯二酚(p-nitrobenzenazo resorcinol,简称NBAR)膜修饰电极上的电化学行为,用差示脉冲伏安法对多巴胺的含量进行测定.结果表明,聚NBAR膜修饰电极对DA有明显的电催化作用.在pH4.0的磷酸盐缓冲液中,氧化峰电流与DA浓度在5.0×10-6~8.0×10-4mol/L范围内呈良好的线性关系,检测限为6.0×10-7mol/L.修饰电极可有效消除针剂中其它组分对DA测定的干扰,已用于实际样品DA含量的测定,结果令人满意.  相似文献   

17.
An electrochemical method for the preparation of poly(pyronin B) film was proposed in this paper. A poly(pyronin B) (poly(PyB)) film modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of reduced form of nicotinamide adenine dinucleotide (NADH). The poly(PyB) film modified electrode surface has been characterized by atomic force microscope (AFM), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV‐visible absorption spectrophotometry (UV‐vis) and cyclic voltammetry (CV). These studies have been used to investigate the poly(PyB) film, which demonstrates the formation of the polymer film and the excellent electroactivity of poly(PyB) in neutral and even in alkaline media. Due to its potent catalytic effects towards the electrooxidation of NADH at lower potential (0.0 V), poly(PyB) film modified electrode can be used for the selective determination of NADH in real samples because of dopamine, ascorbic acid and uric acid oxidation can be avoided at this potential. The catalytic peak currents are linearly dependent on the concentrations of NADH in the range of 1.0×10?6 to 5.0×10?4 mol/L with correlation coefficients of 0.999. The detection limits for NADH is 0.5×10?6 mol/L. Poly(PyB) modified electrode also shows good stability and reproducibility due to the irreversible attachment of polymer film at GCE surface.  相似文献   

18.
利用电化学还原氧化石墨烯(GO)的方法将石墨烯(rGO)固定在电极表面上,然后电沉积氢氧化铜和氢氧化镍复合物,构成石墨烯/金属氢氧化物复合纳米材料修饰的玻碳电极(GCE),并通过电聚合天青Ⅰ将辣根过氧化酶(HRP)固定在GCE/rGO/Cu(OH)_2-Ni(OH)_2表面,制得GCE/rGO/Cu(OH)_2-Ni(OH)_2/HRP-PA。对石墨烯/金属氢氧化物复合纳米材料进行了SEM和能谱表征。通过电化学阻抗法和循环伏安法对传感器的制备过程和电化学性能进行了研究,并进一步分别对过氧化氢叔丁基(BHP)及过氧化氢异丙苯(CHP)进行了分析测定。该传感器对BHP和CHP具有良好的检测效果,在2.0×10~(-5)~9.2×10~(-4)mol/L范围内响应电流与BHP浓度呈良好的线性关系,检出限为9.9×10~(-6)mol/L;在3.0×10~(-6)~1.0×10~(-4)mol/L范围内响应电流与CHP浓度呈良好的线性关系,检出限为6.9×10~(-7)mol/L。  相似文献   

19.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

20.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号