首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Meteoritical Bulletin 101 contains 2639 meteorites accepted by the Nomenclature Committee in 2012, including 1 fall (Battle Mountain), with 2308 ordinary chondrites, 156 carbonaceous chondrites, 63 HED achondrites, 17 relict meteorites, 16 Rumuruti chondrites, 15 enstatite chondrites, 15 ureilites, 10 iron meteorites, 9 lunar meteorites, 9 primitive achondrites, 8 ungrouped achondrites, 7 mesosiderites, 4 Martian meteorites, and 2 Pallasites, and with 1812 from Antarctica, 437 from Asia, 301 from Africa, 43 from South America, 21 from Europe (including Russia), 21 from North America, 3 from Oceania, and 1 from unknown. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at http://www.lpi.usra.edu/meteor/ .  相似文献   

2.
Meteoritical Bulletin 111 contains the 3094 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2022. It includes 11 falls (Antonin, Botohilitano, Cranfield, Golden, Great Salt Lake, Longde, Msied, Ponggo, Qiquanhu, Tiglit, Traspena), with 2533 ordinary chondrites, 165 HED, 123 carbonaceous chondrites (including 4 ungrouped), 82 lunar meteorites, 28 Rumuruti chondrites, 27 iron meteorites, 23 ureilites, 22 mesosiderites, 22 Martian meteorites, 21 primitive achondrites (one ungrouped), 17 ungrouped achondrites, 13 pallasites, 7 enstatite achondrites, 6 enstatite chondrites, and 5 angrites. Of the meteorites classified in 2022, 1787 were from Antarctica, 1078 from Africa, 180 from South America, 34 from Asia, 6 from North America, 4 from Europe, and 1 from Oceania.  相似文献   

3.
Meteoritical Bulletin 102 contains 3141 meteorites including 12 falls (Boumdeid (2003), Boumdeid (2011), Braunschweig, Chelyabinsk, Dongyang, Draveil, Heyetang, Indian Butte, Katol, Ladkee, Ouadangou, Xining), with 2611 ordinary chondrites, 264 HED achondrites, 124 carbonaceous chondrites, 30 ureilites, 20 Martian meteorites, 16 primitive achondrites, 16 Rumuruti chondrites, 15 mesosiderites, 12 iron meteorites, 10 lunar meteorites, 9 enstatite chondrites, 4 enstatite achondrites, 4 Pallasites, 4 ungrouped achondrites, and 2 angrites, and with 1708 from Antarctica, 956 from Africa, 294 from South America, 126 from Asia, 47 from North America, 6 from Europe (including Russia), and 4 from Oceania. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at http://www.lpi.usra.edu/meteor/ .  相似文献   

4.
Meteoritical Bulletin 108 contains 2141 meteorites including 12 falls (Aguas Zarcas, Benenitra, Jalangi, Komaki, Ksar El Goraane, Mhabes el Hamra, Natun Balijan, Oued Sfayat, Shidian, Taqtaq‐e Rasoul, Tocache, Viñales), with 1640 ordinary chondrites, 149 carbonaceous chondrites, 134 HED achondrites, 45 lunar meteorites, 38 ureilites, 27 iron meteorites, 23 Martian meteorites, 22 primitive achondrites, 19 Rumuruti chondrites, 15 mesosiderites, 10 enstatite chondrites, 7 ungrouped achondrites, 4 pallasites, 4 ungrouped chondrites, and 4 angrites. Nine hundred and nine meteorites are from Africa, 747 from Antarctica, 279 from South America, 148 from Asia, 29 from North America, 18 from Oceania, 6 from Europe (including 2 from Russia), and 5 from unknown locations.  相似文献   

5.
Meteoritical Bulletin 104 contains 2279 meteorites including 12 falls (Annama, Cartersville, Creston, Diepenveen, Famenin, Izarzar, Nkayi, Porangaba, San Juan de Ocotán, Trâpe?ng Rôno?s, Xinglongquan, ?d’ár nad Sázavou), with 1847 ordinary chondrites, 138 carbonaceous chondrites, 128 HED achondrites, 38 lunar meteorites, 24 ureilites, 22 Martian meteorites, 19 iron meteorites, 17 primitive achondrites, 14 enstatite chondrites, 10 mesosiderites, 9 Rumuruti chondrites, 5 pallasites, 4 ungrouped achondrites, 2 enstatite achondrites, 1 ungrouped chondrite, and 1 Kakangari chondrite, and with 996 from Antarctica, 790 from Africa, 337 from Asia, 111 from South America, 30 from North America, 11 from Oceania, and 4 from Europe. Note: 1 meteorite from Russia was counted as European.  相似文献   

6.
Meteoritical Bulletin 103 contains 2582 meteorites including 10 falls (Ardón, Demsa, Jinju, Kri?evci, Kuresoi, Novato, Tinajdad, Tirhert, Vicência, Wolcott), with 2174 ordinary chondrites, 130 HED achondrites, 113 carbonaceous chondrites, 41 ureilites, 27 lunar meteorites, 24 enstatite chondrites, 21 iron meteorites, 15 primitive achondrites, 11 mesosiderites, 10 Martian meteorites, 6 Rumuruti chondrites, 5 ungrouped achondrites, 2 enstatite achondrites, 1 relict meteorite, 1 pallasite, and 1 angrite, and with 1511 from Antarctica, 588 from Africa, 361 from Asia, 86 from South America, 28 from North America, and 6 from Europe. Note: 1 meteorite from Russia was counted as European. The complete contents of this bulletin (244 pages) are available on line. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at http://www.lpi.usra.edu/meteor/ .  相似文献   

7.
Meteoritical Bulletin 105 contains 2666 meteorites including 12 falls (Aouinet Legraa, Banma, Buritizal, Ejby, Kamargaon, Moshampa, Mount Blanco, Murrili, Osceola, Sariçiçek, Sidi Ali Ou Azza, Stubenberg), with 2244 ordinary chondrites, 142 HED achondrites, 116 carbonaceous chondrites, 37 Lunar meteorites, 20 enstatite chondrites, 20 iron meteorites, 20 ureilites, 19 Martian meteorites, 12 Rumuruti chondrites, 10 primitive achondrites, 9 mesosiderites, 5 angrites, 4 pallasites, 4 ungrouped achondrites, 2 ungrouped chondrites, 1 enstatite achondrite, and 1 relict meteorite, and with 1545 from Antarctica, 686 from Africa, 245 from Asia, 147 from South America, 22 from North America, 14 from Europe, 5 from Oceania, 1 from unknown origin. Note: 5 meteorites from Russia were counted as European. It also includes a list of approved new Dense Collection Areas and a nomenclature of the Aletai (IIIE‐an) iron meteorites from Xinjiang, China.  相似文献   

8.
Meteoritical Bulletin 106 contains 1868 meteorites including 10 falls (Aiquile, Broek in Waterland, Degtevo, Dingle Dell, Dishchii'bikoh, Hradec Králové, Kheneg Ljouâd, Oudiyat Sbaa, Serra Pelada, Tres Irmaos), with 1386 ordinary chondrites, 166 carbonaceous chondrites, 119 HED achondrites, 48 Lunar meteorites, 37 iron meteorites, 36 ureilites, 19 Martian meteorites, 13 enstatite chondrites, 12 Rumuruti chondrites, 9 primitive achondrites, 8 mesosiderites, 5 enstatite achondrites, 4 ungrouped achondrites, 4 pallasites, and 1 relict meteorite. A total of 958 meteorites are from Africa, 405 from Antarctica, 245 from Asia, 228 from South America, 12 from North America, 8 from Europe, 5 from Mars, 4 from Oceania, and 1 from an unknown location.  相似文献   

9.
Meteoritical Bulletin 100 contains 1943 meteorites including 8 falls (Boumdeid [2011], Huaxi, Ko?ice, Silistra, So?tmany, Sutter's Mill, Thika, Tissint), with 1575 ordinary chondrites, 139 carbonaceous chondrites, 96 HED achondrites, 25 ureilites, 18 primitive achondrites, 17 iron meteorites, 15 enstatite chondrites, 11 lunar meteorites, 10 mesosiderites, 10 ungrouped achondrites, 8 pallasites, 8 Martian meteorites, 6 Rumuruti chondrites, 3 enstatite achondrites, and 2 angrites, and with 937 from Antarctica, 592 from Africa, 230 from Asia, 95 from South America, 44 from North America, 36 from Oceania, 6 from Europe, and 1 from an unknown location. This will be the last Bulletin published in the current format. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available online at http://www.lpi.usra.edu/meteor/  相似文献   

10.
Scott A. Sandford 《Icarus》1984,60(1):115-126
Infrared transmission spectra from 53 meteorites in the spectral range from 2.5 to 25 μm were measured to permit comparisons with data of astronomical objects that are potential meteorite sources. Data were taken for 14 carbonaceous chondrites, 5 LL ordinary chondrites, 6 L ordinary chondrites, 10 H ordinary chondrites, 1 enstatite chondrite, 4 aubrites, 3 eucrites, 4 howardites, 1 diogenite, 1 mesosiderite, 2 nakhlites, 1 shergottite, and the anomalous achondrite Angra dos Reis. The CO and CV carbonaceous chondrites have spectra similar to each other, with 10-μm features characteristic of olivine. The CM carbonaceous chondrites have distinctive 10-μm features that are attributed to layer lattice silicates. Members of both the CI and CR classes have spectra distinct from those of other carbonaceous chondrites. The LL, L, and H ordinary chondrites have spectra that match those of olivine and pyroxene mixtures. The enstatite chondrites and enstatite achondrites (aubrites) all exhibit spectra diagnostic of the pyroxene enstatite. The angrite, howardites, aucrites, nakhlites, shergottite, and diogenite all have similar spectra also dominated by pyroxene. The single mesosiderite examined had a spectrum distinct from all the other meteorites.  相似文献   

11.
Abstract— Meteoritical Bulletin, Number 75 lists 138 new meteorites, including seven falls. Sixty are from North Africa (Acfer, Aguemour, Tanezrouft), and 53 are from Frontier Mountain, Antarctica. There are three achondrites (Caldera, a eucrite, and the brachinites Nova 003 and Reid 013), four carbonaceous chondrites (Acfer 289, CR2, Mundrabilla 012, CV2?, Nova 002, CV3, and Watson 002, the second known CK3), one enstatite chondrite (Acfer 287). Also noteworthy is Rumuruti, the first Carlisle-Lakes-like chondrite observed fall, which fell in 1934.  相似文献   

12.
Abstract– In this edition of The Meteoritical Bulletin, a total of 506 newly approved meteorite names with their relevant data are reported. These include 354 from northwest Africa, 31 from the Americas, 15 from Antarctica (Koreamet), 85 from Asia, 20 from Australia, and 1 from Europe. Among these meteorites are 2 falls, Grimsby (Canada) and Santa Lucia (2008) (Argentina). Also described are a CM with low degree of alteration, new ungrouped chondrites and achondrites, and 4 Martian meteorites.  相似文献   

13.
Abstract— In this edition of The Meteoritical Bulletin, 1394 recognized meteorites are reported, 27 from specific locations within Africa, 133 from Northwest Africa, 1227 from Antarctica (from ANSMET, PNRA, and PRIC expeditions), and 7 from Asia. The Meteoritical Bulletin announces the approval of four new names series by the Nomenclature Committee of the Meteoritical Society, two from Africa and one from Asia, including Al Haggounia, from Al Haggounia, Morocco, which is projected to be on the order of 3 metric tons of material related to enstatite chondrites and aubrites. Approved are two falls from Africa, Bassikounou (Mauritania) and Gashua (Nigeria). Approved from areas other than Antarctica are one lunar, two Martian, 32 other achondrites, three mesosiderites, two pallasites, one CM, two CK, one CR2, two CV3, one CR2, and four R chondrites. The Nomenclature Committee of the Meteoritical Society announces 48 newly approved relict meteorites from two new name series, Österplana and Gullhögen (both from Sweden).  相似文献   

14.
We report the discovery and classification of 30 new meteorites found in or close to Roosevelt County, New Mexico, including two H3 chondrites and a ureilite; the others are equilibrated ordinary chondrites. Over 160 meteorites representing at least 100 different falls have been recovered from this region, mostly from wind blowout areas. As in Antarctica, small specimens predominate and irons, achondrites and C and E chondrites are rare. Paired specimens are also very difficult to identify.  相似文献   

15.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   

16.
Abstract— Thirteen new meteorites and three meteorite inclusions have been analyzed. Their results have been incorporated into earlier published data for a comprehensive reference to all analyzed meteorites at the Smithsonian Institution. The six tables facilitate a convenient overlook of meteorite data. Table 1 presents an alphabetical list of analyzed meteorites, Table 2 chemical analyses of stony meteorites, Table 3 chemical analyses of iron meteorites, Table 4 elemental composition of stony meteorites, Table 5 average composition of carbonaceous chondrites and achondrites (falls and finds), and Table 6 presents average composition of H, L, LL, and Antarctic chondrites (falls and finds). The tables are available online at the journal's Web site http:meteoritics.org .  相似文献   

17.
Abstract— This Meteoritical Bulletin is again dominated by meteorite finds from hot and cold deserts: 99 from the Nullarbor, 12 from the Sahara, and 35 from Antarctica. Besides 161 ordinary chondrites, it lists 5 irons (Cotton, Hidden Valley, Miles, Tagounite, Tres Castillos), 2 ureilites (FRO90168, Hughes 009), 1 howardite (ALH 88135), 1 CV3 (Axtell), 1 CK4 (Sleeper Camp 006), and 2 enstatite chondrites (ALH 88070, Forrest 033). Three of the meteorites are falls.  相似文献   

18.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

19.
Abstract— A database of magnetic susceptibility measurements of stony achondrites (acapulcoite‐lodranite clan, winonaites, ureilites, angrites, aubrites, brachinites, howardite‐eucrite‐diogenite (HED) clan, and Martian meteorites, except lunar meteorites) is presented and compared to our previous work on chondrites. This database provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and more rarely pyrrhotite and titanomagnetite) in these meteorites. Except for ureilites, achondrites appear much more heterogeneous than chondrites in metal content, both at the meteorite scale and at the parent body scale. We propose a model to explain the lack of or inefficient metal segregation in a low gravity context. The relationship between grain density and magnetic susceptibility is discussed. Saturation remanence appears quite weak in most metal‐bearing achondrites (HED and aubrites) compared to Martian meteorites. Ureilites are a notable exception and can carry a strong remanence, similar to most chondrites.  相似文献   

20.
Happy Canyon [found: 1971, 34° 46.5′N, 101° 33.6′W, Texas] consists of about 85 vol. % enstatite (Fs 0.4%), 5 to 10 vol % plagioclase (An 26%), and 5 vol % diopside (Fs 0.9%). In addition, there are minor remnants of metal (Ni 6.35 wt %, Si-free) and troilite (with 5.10 wt % Cr and 1.15 wt % Ti) that have survived extensive terrestrial weathering. The meteorite has a cumulate texture, uniform-size euhedral, prismatic crystals of enstatite (0.3 to 0.4 mm long) with interstitial plagioclase, diopside, troilite, and metal. The enstatite crystals are dominantly disordered and occur in alignments that suggest flow. There are no chondrules or remnants of chondrules. The enstatite crystals contain internal negative crystal voids, which are charactieristic of enstatite achondrites, as well as internal branching submicron rivulet dislocations. The bulk composition is that of an E6 enstatite chondrite, however, it has the texture of a crystal cumulate; achondritic, but unlike that of enstatite achondrites. Glass of a granitic composition occurs mainly in the mesostasis and is compositionally like the glass found inside pyroxene crystals in the Cumberland Falls enstatite achondrite. Happy Canyon is most simply explained as an E6 composition that has melted and reprecipitated at a slightly higher oxidation state, at some depth (> 7 km), possibly in the core volume of a small, asteroidal-size parent body. In terms of classification, it occupies the gap between the recrystallized enstatite chondrites and the igneous, crystalline, unbrecciated enstatite achondrites like Shallowater. Happy Canyon is a new type of enstatite achondrite  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号