首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report paleomagnetic directions from the target rocks of the Tunnunik impact structure, as well as from lithic impact breccia dikes that formed during the impact event. The target sedimentary rocks have been remagnetized after impact‐related tilting during a reverse polarity interval. Their magnetization is unblocked up to 350 °C. The diabase dikes intruding into these sediments retained their original magnetization which unblocks above 400 °C. The impact breccia records a paleomagnetic direction similar to that of the overprints in the target sedimentary rocks. The comparison of the resulting virtual geomagnetic pole for the Tunnunik impact structure with the apparent polar wander path for Laurentia combined with biostratigraphic constraints from the target sedimentary rocks is most consistent with an impact age in the Late Ordovician or Silurian, around 430–450 Ma, soon after the deposition of the youngest impacted sedimentary rocks. Our results from the overprinted sedimentary rocks and diabase dikes imply that the postimpact temperature of the studied rocks was about 350 °C.  相似文献   

2.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

3.
Abstract— The genesis of the 1.13-km-diameter Pretoria Saltpan crater has long been the focus of a controversy. Its origin has been explained by either meteorite impact or “cryptoexplosive” volcanic activity, but it was recently confirmed, through detailed petrographic and chemical analysis of a breccia layer forming part of the crater fill, that the crater was formed by impact. As the limited previous geophysical work failed to support an impact origin, a more detailed gravity and magnetic study was conducted. A possible 400-m-diameter circular crater located 3 km to the southwest of the main crater was also investigated with geophysical methods, including resistivity, seismics and ground-probing radar. The gravity signature of the main crater is compatible with that of a simple impact crater and the magnetic signature (no magnetic anomaly could be detected) rules out the possibility of a central magnetic volcanic body below the crater-fill sediments. The results for the possible twin or satellite crater are inconclusive. As it is the only such feature in the entire region, it should not be overlooked. A drilling program may reveal interesting results.  相似文献   

4.
Abstract– We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7 km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica‐rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8 mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl‐shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root‐less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.  相似文献   

5.
The ~5 km diameter Gow Lake impact structure formed in the Canadian Shield of northern Saskatchewan approximately 197 Myr ago. This structure has not been studied in detail since its discovery during a regional gravity survey in the early 1970s. We report here on field observations from a 2011 expedition that, when combined with subsequent laboratory studies, have revealed a wealth of new information about this poorly studied Canadian impact structure. Initially considered to be a prototypical central peak (i.e., a complex) impact structure, our observations demonstrate that Gow Lake is actually a transitional impact structure, making it one of only two identified on Earth. Despite its age, a well-preserved sequence of crater-fill impactites is preserved on Calder Island in the middle of Gow Lake. From the base upward, this stratigraphy is parautochthonous target rock, lithic impact breccia, clast-rich impact melt rock, red clast-poor impact melt rock, and green clast-poor impact melt rocks. Discontinuous lenses of impact melt-bearing breccia also occur near the top of the red impact melt rocks and in the uppermost green impact melt rocks. The vitric particles in these breccias display irregular and contorted outlines. This, together with their setting within crater-fill melt rocks, is indicative of an origin as flows within the transient cavity and not an airborne mode of origin. Following impact, a hydrothermal system was initiated, which resulted in alteration of the crater-fill impactites. Major alteration phases are nontronite clay, K-feldspar, and quartz.  相似文献   

6.
Abstract The ~7.5 km diameter Wanapitei impact structure (46°45′N; 80°45′W) lies entirely within Lake Wanapitei in central Ontario, Canada. Impact lithologies are known only from glacial float at the southern end of the lake. Over 50% of the impact lithologies recovered from this float can be classified as suevite, <20% as highly shocked and partially melted arkosic metasediments of the target rock Mississagi Formation or, possibly, the Serpent Formation and <20% as glassy impact melt rocks. An additional <5% of the samples have similarities to the suevite but have up to 50% glass clasts and are tentatively interpreted as fall-back material. The glassy impact melt rocks fall into two textural and mineralogical types: a perlitically fractured, colorless glass matrix variant, with microlites of hypersthene with up to 11.5% Al2O3 and a “felted” matrix variant, with evidence of flow prior to the crystallization of tabular orthopyroxene. These melt glasses show chemical inhomogeneities on a microscopic scale, with areas of essentially SiO2, even when appearing optically homogeneous. They are similar in bulk composition for major elements, but the felted matrix variant is ~5×more enriched in Ni, Co and Cr, the interelement ratios of which are indicative of an admixture of a chondritic projectile. Mixing models suggest that the glassy impact melt rocks can be made from the target rocks in the proportions: ~55% Gowganda wacke, ~42% Serpent arkose and ~3% Nipissing intrusives. Geologic reconstructions suggest that this is a reasonable mixture of potential target rocks at the time of impact.  相似文献   

7.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

8.
Abstract— The Wanapitei impact structure is ~8 km in diameter and lies within Wanapitei Lake, ~34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of ~50–60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 °C and 800 °C.  相似文献   

9.
Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater in NW Alberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine-Ca/Fe majorite-rich garnet with a density of 4.2 g cm−3. The shock-produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine-grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high-pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.  相似文献   

10.
Metallic microspheres have been found in rocks from the Onaping Formation of the Sudbury impact structure, Canada. Microspherules are common in contact breccias, the lowest part of the Dowling Member, and rare microspherules have been found in the upper sequences of the Dowling Member. Separate microspherules are dispersed in the breccia matrix and do not form clusters. The sizes of the microspheres range from 5 to 30 μm; most commonly, they are 8–15 μm in size. The microspherules have a regular spherical shape, and in some cases show concentric zonal structures. The microspherules consist mostly of the refractory elements Cr, Co, Fe, Mo, W, and Ti, with a predominant Ni content of 40–75 wt%. The formation of the Sudbury metal microspherules by condensation in a high-temperature plume is suggested by their spherical shape, concentric-zoned structure, uniform composition, and distribution in fallback breccias of the crater-fill Onaping Formation. The content of the most refractory W in the composition of the microspheres indicates early condensation. A decrease in the content of W and an increase in the content of Ni in the microspheres of the upper layers relative to the content of these elements in the earliest microspheres of the contact layers indicate that they could have formed by fractional condensation during the expansion and cooling of the impact vapor plume. As source material, a combination of target rocks with high nickel content with a chondritic impactor is suggested.  相似文献   

11.
Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne‐Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.  相似文献   

12.
Granophyre dykes in the central part of the Vredefort impact structure are believed to be the remnants of the impact melt sheet, which intruded downwards along the fractures in the crater floor. Little is known about their original penetration depth, dip, structural relationships with the host rocks, and their general geophysical characteristics. This information is critical to understand the emplacement history of the granophyre dykes, as it relates to the formation and modification of large impact structures. We conducted magnetic and resistivity surveys across the Daskop granophyre dyke (DGD), one of the impact melt dykes in the structure's core. The magnetic survey revealed that the DGD gives a strong magnetic response at positions where the dyke outcrop exceeds the surface topography, but a very weak response where the outcrop is nearly at the same elevation as the surrounding topography. The magnetic anomaly is thus predominantly due to the outcrop protruding above ground level, suggesting a limited volume of dyke material in the subsurface and a small penetration depth. The resistivity survey performed on two profiles, set perpendicularly across the DGD, indicated a shallow penetration depth (<3 m), consistent with the magnetic interpretation. Thus, our geophysical study demonstrates that the DGD is currently at the very bottom of its original emplacement. This may either be an erosional coincidence, or it may be controlled by a fundamental process of impact cratering. Further studies are warranted to determine if other granophyre dykes at Vredefort are similarly at their lowermost terminations.  相似文献   

13.
Abstract— New gravity and magnetic data were obtained along ground profiles across the Roter Kamm impact crater in the southern Namib desert of Namibia. As the traverses of previous studies did not extend sufficiently beyond the crater rim, it had not been possible to adequately determine the regional background values. The gravity results of this study are similar to those obtained by Fudali in 1973, in that a negative, near-symmetrical anomaly was obtained over the crater center. This anomaly conforms to the results expected for a sediment and impact breccia-filled, simple bowl-shaped crater. The magnetic results of this study, however, are different to those previously reported, which is most probably as a result of the longer profiles used in this new study. A slight positive magnetic anomaly was obtained over the crater interior. Short-wavelength, high-amplitude anomalies observed in the vicinity of the crater rim reflect magnetization contrasts that are probably related to brecciation and block rotation. Modelling of the positive magnetic anomaly indicates the possibility of a small magnetic body or lining at the crater floor-breccia interface in the interior of the crater. Also presented is a 10 m contour digital elevation model of the crater and its environs.  相似文献   

14.
Abstract— An approximately 0.4 km diameter elliptical structure formed in Devonian granite in southwestern Nova Scotia, herein named the Bloody Creek structure (BCS), is identified as a possible impact crater. Evidence for an impact origin is based on integrated geomorphic, geophysical, and petrographic data. A near‐continuous geomorphic rim and a 10 m deep crater that is infilled with lacustrine sediments and peat define the BCS. Ground penetrating radar shows that the crater has a depressed inner floor that is sharply ringed by a 1 m high buried scarp. Heterogeneous material under the floor, interpreted as deposits from collapse of the transient cavity walls, is overlain by stratified and faulted lacustrine and wetland sediments. Alteration features found only in rim rocks include common grain comminution, polymict lithic microbreccias, kink‐banded feldspar and biotite, single and multiple sets of closely spaced planar microstructures (PMs) in quartz and feldspar, and quartz mosaicism, rare reduced mineral birefringence, and chlorite showing plastic deformation and flow microtextures. Based on their form and crystallographic orientations, the quartz PMs consist of planar deformation features that document shock‐metamorphic pressures ≤25 GPa. The age of the BCS is not determined. The low depth to diameter ratio of the crater, coupled with anomalously high shock‐metamorphic pressures recorded at its exposed rim, may be a result of significant post‐impact erosion. Alternatively, impact onto glacier ice during the waning stages of Wisconsinian deglaciation (about 12 ka BP) may have resulted in dissipation of much impact energy into the ice, resulting in the present morphology of the BCS.  相似文献   

15.
Plagioclase feldspar is one of the most abundant minerals on the surface of the Earth, the Moon, and Mars, and is also commonly found in meteorites. Studying shock effects in feldspar thus provides us with fundamental information about impact cratering processes on planetary bodies. In this study, plagioclase from monomict and polymict breccias, impact melt rocks, and shock‐metamorphosed target rocks, from throughout the Mistastin Lake impact structure, Canada, was examined using 514 nm laser Raman spectroscopy. As one of the very few impact structures with anorthosite in the target rocks, the Mistastin Lake impact structure provides a unique opportunity to study shocked plagioclase displaying progressive shock metamorphic features. A series of microscopic features was observed within plagioclase, including twins, needle‐like inclusions, planar features, and alteration. The lack of planar deformation features is notable. Raman spectra of these features suggest that this technique is capable of differentiating and classifying shock features in low to moderately shocked rocks. Caution should be exercised, however, as Raman spectra collected from unshocked plagioclase references with known compositions indicate that peak width and peak ratio of the Raman peaks in lower wave number region (<350 cm?1) and the main signature peaks around 500 cm?1 vary with chemical composition and crystal orientation. Data collected from diaplectic glass suggest that Raman features are efficient in distinguishing crystalline plagioclase and diaplectic glass. We also observed significant variations in the Raman intensities collected from diaplectic glass, which we ascribe to the localized disorder or inhomogeneity of shock pressure and temperature throughout the target.  相似文献   

16.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   

17.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

18.
The 1.85 Ga Sudbury Igneous Complex (SIC) and its thermal aureole are unique on Earth with regard to unraveling the effects of a large impact melt sheet on adjacent target rocks. Notably, the formation of Footwall Breccia, lining the basal SIC, remains controversial and has been attributed to impact, cratering, and postcratering processes. Based on detailed field mapping and microstructural analysis of thermal aureole rocks, we identified three distinct zones characterized by static recrystallization, incipient melting, and crystallization textures. The temperature gradient in the thermal aureole increases toward the SIC and culminates in a zone of partial melting, which correlates spatially with the Footwall Breccia. We therefore conclude that assimilation of target rock into initially superheated impact melt and simultaneous deformation after cratering strongly contributed to breccia formation. Estimated melt fractions of the Footwall Breccia amount to 80 vol% and attest to an extreme loss in mechanical strength and, thus, high mobility of the Breccia during assimilation. Transport of highly mobile Footwall Breccia material into the overlying Sublayer Norite of the SIC and vice versa can be attributed to Raleigh–Taylor instability of both units, long‐term crater modification caused by viscous relaxation of crust underlying the Sudbury impact structure, or both.  相似文献   

19.
The origin of the nearly circular Colônia structure, located at the southwestern edge of the city of São Paulo, Brazil, has been the subject of a long‐standing debate, ever since the 1960s when the structure was first investigated by geophysical methods. The structure still raises interest for geological research, as its sedimentary infill holds important paleoclimatic information about the evolution of the tropical rainforest, as well as the interplay between the South American summer monsoon, the Intertropical Convergence Zone, and the southern Westerly wind belt—for possibly as long as several million years. In addition, the search for evidence to conclusively establish the origin of this structure continues, and the answer most likely lies in the lower portions of the basin's sedimentary infill, which also holds a significant potential for underground water resources. Here, we present the results from recent seismic (reflection and HVSR), gravimetric, and geoelectrical surveys. They have provided a reliable image of the sedimentary infill, and the maximum depth to basement within the structure has been constrained consistently by the different methods to approximately ?400 m. The geophysical data have also allowed to map the lateral contact between the crystalline basement rocks and the sedimentary infill, which indicates a diameter of approximately 2.8 km for the sedimentary basin, with 3.6 km being the diameter of the outermost limit of the structure. A total of six seismic stratigraphic boundaries were identified within the sedimentary infill, providing a framework for the planning of a deep drilling campaign and subsequent sampling program aimed at geological and paleoclimatology studies.  相似文献   

20.
This paper reports on the Middlesboro impact structure (36°37′03″ N; 83°43′39″ W), a complex impact structure located in the Appalachian foreland fold-and-thrust belt of southeast Kentucky, USA. The structure forms a basin approximately 5.5 km in diameter exposing intensely deformed Pennsylvanian sediments. Based on field data, microstructural observation, and geophysical analyses we qualitatively assess degree and distribution of fragmentation of target rocks within the impact structure. Shock deformation features, especially feather features, are reported for the impact structure. Shallow seismic refraction data were acquired along a radial profile from outside the impact structure to the center of the structure. Seismic (P-wave) velocity trends indicate that fracture intensity increases toward the center, reducing the overall seismic velocity. However, intense rock sealing in some parts of the central uplift increases the strength of rock samples and locally increases seismic velocities. We present a modified geologic map of the Middlesboro impact structure based on high-resolution lineament analysis, field work, and reevaluation of existing structural data from geologic maps. The modified map suggests that crater circularity at Middlesboro is skewed by the reactivation of pre-existing zones of structural anisotropy in the target. We propose that due to an oblique impact from northerly direction the sub-horizontal Pine Mountain thrust plane beneath the impact structure became reactivated with a top-to-the south shear component. The impact-induced formation/reactivation of the Doublings Fault Zone as a thrust ramp appears to have deflected the otherwise straight strike of the Cumberland Mountains southward. The Rocky Face fault approaches the crater rim fault, and we propose that this sinistral strike-slip fault was formed, or at least reactivated, by the impact and accommodated the oblique impact's horizontal momentum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号