首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioactivity and magnetic properties were investigated in glass and glass ceramics based on the SiO2–Na2O–Fe2O3–CaO–P2O5–B2O3 system to find their suitability as thermoseed for hyperthermia treatment of cancer. The effect of change in compositions on bioactivity was examined in simulated body fluids. The glass ceramic samples exhibit Na3CaSi3O8 and Na3-XFeXPO4 phases. After dipping the glass ceramic samples in simulated body fluids silica hydrogel first forms, followed by an amorphous calcium phosphate layer. Magnetic and microwave resonance experiments further demonstrate the potential of these glass ceramics for possible use in hyperthermia.  相似文献   

2.
Low-temperature plasma synthesis was used to prepare solid solutions ( and ) in the ZnFe2O4–Zn2ZrO4pseudobinary system. The Zn2 – x Zr1 – x Fe2x O4solid solutions were found to have a tetragonal spinel structure (a= 8.607–8.740 Å, c= 8.798–9.120 Å) in the composition range x= 0–0.55 and a cubic spinel structure (a= 8.447–8.539 Å) at x= 0.75–1.0. The tetragonal lattice distortion is attributed to a pseudo-Jahn–Teller effect. The electrical conductivity of the solid solutions shows semiconducting behavior and rises by a few orders of magnitude with increasing Fe3+content.  相似文献   

3.
Thin films of different Li2O–ZnO–Co3O4–TiO2 (LZCT) compositions were prepared and employed as electrocatalysts (i.e., anodes) to perform water oxidation reaction (WOR). The electrocatalytic activities of these thin films were compared with those exhibited by the sodium salt of cobalt phosphate (Na2CoP2O7) (CP) thin-film electrocatalyst, which is a well-known water oxidation catalyst (WOC). These results suggest that the 10Li2O–10ZnO–40Co3O4–40TiO2 composition exhibits a better catalytic activity in terms of higher faradaic efficiency (>98%), lower over potentials (<400?mV), higher reaction stability (up to 30 continuous cyclic voltammetry (CV) cycles), and the rate of O2 and H2 gas evolution in terms of current density (about 1?mA/cm2) in comparison with those exhibited by CP thin-film electrocatalyst. Furthermore, these LZCT thin films exhibited very high specific surface area values and due to the unique microstructure of ZnCo2O4 phase evolved out of these LZCT compositions at a calcination temperature of 550°C for 30?min it has been found to be responsible for the higher specific surface area values measured for these thin-film compositions.  相似文献   

4.
Phase relations in the Na2O–Al2O3–Nb2O5and CaO–Al2O3–Nb2O5systems were studied. The Na2O system was found to contain neither ternary compounds nor niobate–aluminate solid solutions. In the CaO system, a ternary compound of composition 4CaO · Al2O3·Nb2O5was identified (cubic structure, a= 7.628 Å, Z= 2, meas= x= 4.43 g/cm3).  相似文献   

5.
The phase region of cubic perovskite-like solid solutions (a = 8.28–8.40 Å) in the Y2O3–BaO–WO3–CuO system is outlined, and the phase compatibility diagram of the BaWO4–BaCuO2–Y2Cu2O5–1010 (1010 = Y2WO6 + Y2W3O12) is constructed.  相似文献   

6.
《Materials Letters》2003,57(22-23):3543-3548
The preparation of ZnCr2O4 was carried out by the high-temperature solid-state method with the reaction of Cr2O3 and ZnO at 900 °C. Experimental results on the composites made from different mole ratios of ZnCr2O4 and ZnO for electrical and humidity-sensing properties are described. The sintered polycrystalline disks of the composites were subjected to DC electrical conductivity measurements over the temperature range 330–500 K from which the activation energies were determined. The composites were identified by powder X-ray diffraction (XRD). The scanning electron microscopy (SEM) studies were carried out to study the surface structure of the sensor materials. The composites were subjected to DC resistance measurements as a function of relative humidity in the range of 5–98% RH, achieved by different water vapor buffers thermostated at room temperature. The sensitivity factor Sf (R5%/R98%) measured at 298 K revealed that ZCZO-21 has the highest humidity sensitivity, greater than 6.5×103; however, ZCZO-11, ZCZO-32, and ZCZO-14 have lower sensitivity but better linear trend. The response and recovery characteristics for ZCZO-21 and ZCZO-11 were assessed.  相似文献   

7.
Ac conductivity measurements and its analysis has been performed on xBi2O3–(65?x)Li2O–20ZnO–15B2O3 (0  x  20) glasses in the temperature range 30–300 °C and a frequency range of 100 Hz to 1 MHz. The dc conductivity increased and the activation energy decreased with lithium content. The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. The onset of conductivity relaxation shifts towards higher frequencies with temperature. The Almond–West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature.  相似文献   

8.
The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO2–0.40–xZnO–0.10Na2O–0.08CaO glass series, (where x = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (Control 1.23, TGa-1 2.32 and TGa-2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm?1. Magic angle spinning nuclear magnetic resonance determined a chemical shift from ?73, ?75 to ?77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.  相似文献   

9.
A new Li2O–Nb2O5–TiO2 (LNT) ceramic with the Li2O:Nb2O5:TiO2 mole ratio of 3:1:3 has been investigated. The compound is composed of two phases, the Li2TiO3 and “M-phase” solid solution phase. The microwave dielectric ceramic has low sintering temperature (∼1100 °C) and good microwave dielectric properties of a relatively high permittivity (∼51), high × f value up to 8700, and small temperature coefficient (∼37 ppm/°C). The low-amount doping of 0.83Li2O–0.17V2O5 (LV) can effectively lower the sintering temperature from 1100 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 1 wt.% LV-doped ceramic sintered at 900 °C has better microwave dielectric properties of εr = 51.3, × f = 7235 GHz, τ f  = 22 ppm/°C, which suggests that the ceramics can be applied in microwave LTCC devices.  相似文献   

10.
glass system, with 0 < x 50 mol%, was prepared and investigated by EPR method. For low content of V2O5 all the spectra present a hyperfine structure typical for isolated V4+ ions. With the increasing of V2O5 content, the EPR absorption signal showing hyperfine structure is superposed by a broad line without hyperfine structure characteristic for clustered ions. At high V2O5 content, the vanadium hyperfine structure disappears and only the broad line can be observed in the spectra. Spin Hamiltonian parameters g , g , A , A , dipolar hyperfine coupling parameters, P, and Fermi contact interaction parameters, K, have been calculated.The composition dependence of line widths of the first two absorptions from the parallel band and of the broad line characteristic to the cluster formations was also discussed.  相似文献   

11.
The effects of Li2O–ZnO–B2O3 (LZB) glass additive on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Li2Zn3Ti4O12 ceramics were investigated. The addition of a small amount of LZB glass can reduce the sintering temperature of Li2Zn3Ti4O12 ceramics from 1,075 to 900 °C without much degradation of the microwave dielectric properties. Only a single-phase Li2Zn3Ti4O12 is formed in Li2Zn3Ti4O12 ceramic with LZB addition. Typically, the 1.5 wt% LZB glass-added Li2Zn3Ti4O12 ceramic sintered at 900 °C for 2 h can reach a high relative density of 97.5 % and exhibits good microwave dielectric properties, i.e., relative dielectric constant (ε r ) = 19.1, quality factor (Q) = 7083.5 at 9 GHz, and temperature coefficient of resonant frequency (τ f ) = ? 48.9 ppm/°C. In addition, the ceramic could be co-fired well with an Ag electrode, which is made it as a promising dielectric ceramic for low temperature co-fired ceramics technology application.  相似文献   

12.
A series of ceramics with a general formula Ca1+xLa4?xNbxTi5?xO17 (0 ≤ x ≤ 4) were fabricated using the solid-state ceramic route. The phase, microstructure, and microwave dielectric properties varied distinctly with composition or the value of x. X-ray diffraction results showed that the two end member phases, CaLa4Ti5O17 and Ca5Nb4TiO17, crystallized into single phases with orthorhombic and monoclinic crystal structure, respectively. For intermediate compounds with x = 1, 2, and 3, mixture phases CaLa4Ti5O17 and Ca5Nb4TiO17 coexisted and a trace amount of second phase was detected. The ceramics showed high ε r in the range of 45–52, relatively high quality factors with Q × f in the range of 9,870–15,680 GHz and τ f value in the range between ?38 and ?126.4 ppm/°C. τ f of CaLa4Ti5O17 can be tuned to a near-zero value by addition of suitable amount of TiO2.  相似文献   

13.
The effects of CaO–B2O3–SiO2 (CBS) glass addition on the sintering temperature and dielectric properties of Mg4Nb2O9 ceramics have been investigated using X-ray diffraction, Scanning electron microscopy and Differential thermal analysis. The CBS glass can change to liquid phase at about 750 °C and a small amount of CBS glass addition to Mg4Nb2O9 ceramics can greatly decrease the sintering temperature to about 1,125 °C. It is revealed that the reduced sintering temperature is attributed to the formation of liquid phase. The major phases of the sample are Mg4Nb2O9 and MgNb2O6. The relationship between τ f values and the content of glass additions have the reverse change trends. The Mg4Nb2O9 ceramics with 2wt% glass addition sintered 1,125 °C exhibit good microwave dielectric properties: dielectric constant (ε r ) of 13 and Q·f value of 69,000 GHz.  相似文献   

14.
PbGe4O9–MGe4O9 (M = Ba, Sr) and BaGe4O9–SrGe4O9 samples prepared via melt solidification and by solid-state reactions were characterized by x-ray diffraction and x-ray microanalysis, and their dielectric, piezoelectric, and pyroelectric properties were studied. The results demonstrate that the presence of BaO or SrO in (1 – x)PbO · xMO · 4GeO2 starting mixtures stabilizes -PbGe4O9. In -PbGe4O9 crystals, only 3% of the Pb atoms can be substituted with Ba or Sr. In BaGe4O9 and SrGe4O9 crystals, the fraction of Ba or Sr atoms substituted with Pb attains 40%. BaGe4O9 and SrGe4O9 form a continuous series of solid solutions. The ferroelectric phase transition near 140 K and the pyroelectric effect in the samples are due to the presence of -PbGe4O9. M1 – y Pb y Ge4O9 and Ba1 – x Sr x Ge4O9 solid solutions, isostructural with -PbGe4O9, possess neither ferroelectric nor pyroelectric properties.  相似文献   

15.
The effects of Bi4B2O9 addition on the sintering temperature, phase transition and microwave dielectric properties of BaO–Nd2O3–4TiO2 (BNT) ceramics have been investigated. With 10 wt% Bi4B2O9 addition, the sintering temperature of the BNT ceramics can be lowered down to about 1,150 °C. The secondary phase was observed at the level of 15 wt% Bi4B2O9 addition. The Bi4B2O9 addition can significantly affects the microwave dielectric properties. The Q × f 0 value is a function of the sintering temperature and the Bi4B2O9 content. For the samples sintered at 1,150 °C, Q × f 0 value varies from 6,300 to 3,300 GHz as the Bi4B2O9 addition increases from 5 to 20 wt%. The addition of Bi4B2O9 does not induce much degradation in εr but modified the τf value to near zero. Typically, When 10 wt% Bi4B2O9 is added, the τf of the ceramics could be tuned to a near-zero value (~1.2 ppm/°C), a substantial εr (~86) and Q × f 0 (~4,670 GHz) could also be achieved simultaneously. The Bi4B2O9 is an efficient sintering additive to decrease the sintering temperature and tune the τf value of the microwave dielectric materials for the practical microwave applications.  相似文献   

16.
Phase relations in the systems Al2TiO5–Fe2O3, Al2TiO5–Cr2O3, and Al2O3–TiO2–Fe2O3 are investigated, and the composition ranges of pseudobrookite Al2 – 2x M2x TiO5 (M = Fe, Cr) solid solutions are determined.  相似文献   

17.
The coercive forces are taken out from the loops of magnetisation cycle for yZnFe2O4–(1 ? y)CoFe2O4 mixed magnetic nanoparticles system (y is the volume fraction of ZnFe2O4 particles in yZnFe2O4–(1 ? y)CoFe2O4 magnetic nanoparticles mixed system). The results show that the coercive force of the system is increasing with the y decreasing and is interpreted by using particles chain model. The number of chains of particles under magnetic field is obtained by comparing the coercive force of the experiment and the theory of chain model. In yZnFe2O4–(1 ? y)CoFe2O4 magnetic nanoparticles mixed system, the coercive force comes from ferrimagnetic CoFe2O4 nanoparticles, and paramagnetic ZnFe2O4 nanoparticles make the chain length of the mixed magnetic system shorter than single CoFe2O4 nanoparticles system.  相似文献   

18.
The present work demonstrates how crystals with two different characteristic morphologies can be formed in SiO2–MgO–Al2O3–K2O–B2O3–F glass-ceramic system by adopting two sets of heat treatment experiments. In our study, single stage heat treatment experiments were performed at 1,000°C for varying holding time of 8–24 h with 4 h time interval and as a function of temperature in the range of 1,000–1,120°C with 40°C temperature interval. The constant heating rate of 10°C/min was employed for both sets of experiments. The microstructural changes were investigated using Fourier transformed infrared spectroscopy (FT-IR), SEM-EDS and XRD. For temperature variation batches, the microstructure is characterized by interlocked, randomly oriented mica plates (‘house-of-cards’ morphology). An important and new observation of complex crystal morphology is made in the samples heat treated at 1,000°C for varying holding times. Such morphology appears to be the results of composite spherulitic-dendritic like growth of mica rods radiating from a central nucleus. The possible mechanism for such characteristic crystal growth morphology is discussed with reference to a nucleation-growth kinetics based model. The activation energy for crystal nucleation and Avrami index are computed to be 388 kJ/mol and 1.3 respectively, assuming Johnson–Mehl–Avrami model of crystallization. Another important result is that a maximum of around 70% of spherulitic-dendritic like crystal morphology can be obtained after heat treatment at 1,000°C for 24 h, while a lower amount (~58%) of interlocked plate like mica crystals is formed after heat treatment at 1,040°C for 4 h.  相似文献   

19.
Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors.  相似文献   

20.
Cf/LAS composites and TC4 alloy were brazed successfully by vacuum brazing using Ag–Cu–Ti active filler metal. The interfacial microstructure was characterized by a scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The effects of brazing temperature on the interfacial microstructure and joint properties were investigated in details. Various phases including TiC, TiSi2, Ti3Cu4, Cu (s,s), Ag (s,s), TiCu and Ti2Cu were formed in the brazed joints. Interfacial microstructure varies greatly with the increase of brazing temperature, while the amount of Ti2Cu reduced, but no new phase is generated. The optimal shear strength of the joint is 26.4 MPa when brazed at 890 °C for 10 min. Shear test indicated that the fracture of the brazed joints went through the TiSi2 + TiC layer close to the Cf/LAS composites interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号