首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper presents an extension of a competitive vehicle routing problem with time windows (VRPTW) to find short routes with the minimum travel cost and maximum sale by providing good services to customers before delivering the products by other rival distributors. In distribution of the products with short life time that customers need special device for keeping them, reaching time to customers influences on the sales amount which the classical VRPs are unable to handle these kinds of assumptions. Hence, a new mathematical model is developed for the proposed problem and for solving the problem, a simulated annealing (SA) approach is used. Then some small test problems are solved by the SA and the results are compared with obtained results from Lingo 8.0. For large-scale problems, the, Solomon's benchmark instances with additional assumption are used. The results show that the proposed SA algorithm can find good solutions in reasonable time.  相似文献   

2.
This paper presents a novel model for a time dependent vehicle routing problem when there is a competition between distribution companies for obtaining more sales. In a real-world situation many factors cause the time dependency of travel times, for example traffic condition on peak hours plays an essential role in outcomes of the planned schedule in urban areas. This problem is named as “Time dependent competitive vehicle routing problem” (TDVRPC) which a model is presented to satisfy the “non-passing” property. The main objectives are to minimize the travel cost and maximize the sale in order to serve customers before other rival distributors. To solve the problem, a Modified Random Topology Particle Swarm Optimization algorithm (RT-PSO) is proposed and the results are compared with branch and bound algorithm in small size problems. In large scales, comparison is done with original PSO. The results show the capability of the proposed RT-PSO method for handling this problem.  相似文献   

3.
This paper presents a novel bi-objective location-routing-inventory (LRI) model that considers a multi-period and multi-product system. The model considers the probabilistic travelling time among customers. This model also considers stochastic demands representing the customers’ requirement. Location and inventory-routing decisions are made in strategic and tactical levels, respectively. The customers’ uncertain demand follows a normal distribution. Each vehicle can carry all kind of products to meet the customer’s demand, and each distribution center holds a certain amount of safety stock. In addition, shortage is not allowed. The considered two objectives aim to minimize the total cost and the maximum mean time for delivering commodities to customers. Because of NP-hardness of the given problem, we apply four multi-objective meta-heuristic algorithms, namely multi-objective imperialist competitive algorithm (MOICA), multi-objective parallel simulated annealing (MOPSA), non-dominated sorting genetic algorithm II (NSGA-II) and Pareto archived evolution strategy (PAES). A comparative study of the forgoing algorithms demonstrates the effectiveness of the proposed MOICA with respect to four existing performance measures for numerous test problems.  相似文献   

4.

In open vehicle routing problem (OVRP), after delivering service to the last customer, the vehicle does not necessarily return to the initial depot. This type of problem originally defined about thirty years ago and still is an open issue. In real life, the OVRP is similar to the delivering newspapers and consignments. The problem of service delivering to a set of customers is a particular open VRP with an identical fleet for transporting vehicles that do not necessarily return to the initial depot. Contractors which are not the employee of the delivery company use their own vehicles and do not return to the depot. Solving the OVRP means to optimize the number of vehicles, the traveling distance and the traveling time of a vehicle. In time, several algorithms such as tabu search, deterministic annealing and neighborhood search were used for solving the OVRP. In this paper, a new combinatorial algorithm named OVRP_GELS based on gravitational emulation local search algorithm for solving the OVRP is proposed. We also used record-to-record algorithm to improve the results of the GELS. Several numerical experiments show a good performance of the proposed method for solving the OVRP when compared with existing techniques.

  相似文献   

5.
Nowadays in competitive markets, production organizations are looking to increase their efficiency and optimize manufacturing operations. In addition, batch processor machines (BPMs) are faster and cheaper to carry out operations; thus the performance of manufacturing systems is increased. This paper studies a production scheduling problem on unrelated parallel BPMs with considering the release time and ready time for jobs as well as batch capacity constraints. In unrelated parallel BPMs, modern machines are used in a production line side by side with older machines that have different purchasing costs; so this factor is introduced as a novel objective to calculate the optimum cost for purchasing various machines due to the budget. Thus, a new bi-objective mathematical model is presented to minimize the makespan (i.e., Cmax), tardiness/earliness penalties and the purchasing cost of machines simultaneously. The presented model is first coded and solved by the ε-constraint‌ method. Because of the complexity of the NP-hard problem, exact methods are not able to optimally solve large-sized problems in a reasonable time. Therefore, we propose a multi-objective harmony search (MOHS) algorithm. the results are compared with the multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective ant colony optimization algorithm (MOACO). To tune their parameters, the Taguchi method is used. The results are compared by five metrics that show the effectiveness of the proposed MOHS algorithm compared with the MOPSO, NSGA-II and MOACO. At last, the sensitivity of the model is analyzed on new parameters and impacts of each parameter are illustrated on bi- objective functions.  相似文献   

6.
Cross-docking is a material handling and distribution technique in which products are transferred directly from the receiving dock to the shipping dock, reducing the need for a warehouse or distribution center. This process minimizes the storage and order-picking functions in a warehouse. In this paper, we consider cross-docking in a supply chain and propose a multi-objective mathematical model for minimizing the make-span, transportation cost and the number of truck trips in the supply chain. The proposed model allows a truck to travel from a supplier to the cross-dock facility and from the supplier directly to the customers. We propose two meta-heuristic algorithms, the non-dominated sorting genetic algorithm (NSGA-II) and the multi-objective particle swarm optimization (MOPSO), to solve the multi-objective mathematical model. We demonstrate the applicability of the proposed method and exhibit the efficacy of the procedure with a numerical example. The numerical results show the relative superiority of the NSGA-II method over the MOPSO method.  相似文献   

7.
The aim of this study is to solve the newspaper delivery optimization problem for a media delivery company in Turkey by reducing the total cost of carriers. The problem is modelled as an open vehicle routing problem (OVRP), which is a variant of the vehicle routing problem. A variable neighbourhood search-based algorithm is proposed to solve a real-world OVRP. The proposed algorithm is tested with varieties of small and large-scale benchmark suites and a very large-scale real-world problem instance. The results of the proposed algorithm provide either the best known solution or a competitive solution for each of the benchmark instances. The algorithm also improves the real-world company’s solutions by more than 10%.  相似文献   

8.
The vehicle routing problem with time windows is a complex combinatorial problem with many real-world applications in transportation and distribution logistics. Its main objective is to find the lowest distance set of routes to deliver goods, using a fleet of identical vehicles with restricted capacity, to customers with service time windows. However, there are other objectives, and having a range of solutions representing the trade-offs between objectives is crucial for many applications. Although previous research has used evolutionary methods for solving this problem, it has rarely concentrated on the optimization of more than one objective, and hardly ever explicitly considered the diversity of solutions. This paper proposes and analyzes a novel multi-objective evolutionary algorithm, which incorporates methods for measuring the similarity of solutions, to solve the multi-objective problem. The algorithm is applied to a standard benchmark problem set, showing that when the similarity measure is used appropriately, the diversity and quality of solutions is higher than when it is not used, and the algorithm achieves highly competitive results compared with previously published studies and those from a popular evolutionary multi-objective optimizer.  相似文献   

9.
为了分析城市配送中顾客选择末端交付方式和配送时间窗的相关性对自提柜选址、时间窗分配与路径规划等运营决策的影响,首先使用嵌套Logit选择模型量化顾客对配送服务选项的选择行为,提出了城市配送两层嵌套Logit选择模型;然后以配送数量最大化和配送成本最小化为目标,建立了自提柜选址-时间窗分配-路径规划集成优化模型;最后采用非支配排序、动态网格和拥挤距离等技术,构建了多目标粒子群优化(MOPSO)算法进行仿真分析,获取了末端交付方式和配送时间窗相关性对运营决策的影响。研究表明:随着送货上门服务尺度因子逐渐增大,顾客需求在不同配送时间窗之间的替代性变小,无论是追求配送成本最小化、还是追求配送数量最大化,获取的最优方案均倾向于提高配送准时性,配送数量逐渐上升;相反,随着自提柜服务尺度因子逐渐增大,不同于送货上门服务,获取的最优方案倾向于降低配送准时性,配送数量逐渐下降。  相似文献   

10.
易腐生鲜货品车辆路径问题的改进混合蝙蝠算法   总被引:1,自引:0,他引:1  
殷亚  张惠珍 《计算机应用》2017,37(12):3602-3607
针对配送易腐生鲜货品的车辆其配送路径的选择不仅受货品类型、制冷环境变化、车辆容量限制、交货时间等多种因素的影响,而且需要达到一定的目标(如:费用最少、客户满意度最高),构建了易腐生鲜货品车辆路径问题(VRP)的多目标模型,并提出了求解该模型的改进混合蝙蝠算法。首先,采用时间窗模糊化处理方法定义客户满意度函数,细分易腐生鲜货品类型并定义制冷成本,建立了最优路径选择的多目标模型;然后,在分析蝙蝠算法求解离散问题易陷入局部最优、过早收敛等问题的基础上,精简经典蝙蝠算法的速度更新公式,并对混合蝙蝠算法的单多点变异设定选择机制,提高算法性能;最后,对改进混合蝙蝠算法进行性能测试。实验结果表明,与基本蝙蝠算法和已有混合蝙蝠算法相比,所提算法在求解VRP时能够提高客户满意度1.6%~4.2%,且减小平均总成本0.68%~2.91%。该算法具有计算效率高、计算性能好和较高的稳定性等优势。  相似文献   

11.
In this paper, a bi-objective multi-product (r,Q) inventory model in which the inventory level is reviewed continuously is proposed. The aim of this work is to find the optimal value for both order quantity and reorder point through minimizing the total cost and maximizing the service level of the proposed model simultaneously. It is assumed that shortage could occur and unsatisfied demand could be backordered, too. There is a budget limitation and storage space constraint in the model. With regard to complexity of the proposed model, several Pareto-based meta-heuristic approaches such as multi-objective vibration damping optimization (MOVDO), multi-objective imperialist competitive algorithm (MOICA), multi-objective particle swarm optimization (MOPSO), non-dominated ranked genetic algorithm (NRGA), and non-dominated sorting genetic algorithm (NSGA-II) are applied to solve the model. In order to compare the results, several numerical examples are generated and then the algorithms were analyzed statistically and graphically.  相似文献   

12.
This paper addresses inventory problem for the products that are sold in monopolistic and captive markets experiencing hybrid backorder (i.e., fixed backorder and time-weighted backorder). The problem with stochastic demand is studied first by developing single objective (cost) inventory model. Computational results of a numerical problem show the effectiveness of hybrid backorder inventory model over fixed backorder inventory model. The model is later extended to multi-objective inventory model. Three objectives of multi-objective inventory model are the minimization of total cost, minimization of stockout units and minimization of the frequency of stockout. A multi-objective particle swarm optimization (MOPSO) algorithm is used to solve the inventory model and generate Pareto curves. The Pareto curves obtained for hybrid backorder inventory model are compared with the existing Pareto curves that are based on fixed backorder. The results show a substantial reduction in stockout units and frequency of stockout with a marginal rise in cost with proposed hybrid backorder inventory system in comparison to existing fixed backorder inventory system. Sensitivity analysis is done to study the robustness of total cost, order quantity, and safety stock factor with the change in holding cost. In the end, the performance of the MOPSO algorithm is compared with the multi-objective genetic algorithm (MOGA). The metrics that are used for the performance measurement of the algorithms are error ratio, spacing and maximum spread.  相似文献   

13.
需求依赖库存且短缺量部分拖后的促销商品库存模型   总被引:1,自引:0,他引:1  
何伟  徐福缘 《计算机应用》2013,33(10):2950-2953
促销商品是商场吸引顾客前往购买消费的一种重要手段,它可以有效带动其他商品的销售从而提高商场销售收入。考虑促销商品在缺货期间价格和时间对顾客等待行为的影响,构造了一个与销售价和等待时间相关的短缺量拖后率,建立了多次订货下两阶段存货影响需求和顾客等待的促销商品库存模型,并利用仿真方法分析价格和时间敏感因子、存货影响需求临界点、销售价格对销售商订货策略和系统总利润的影响。结果表明:价格和时间敏感因子对各周期服务水平影响显著,存货影响需求临界点对订货次数影响较大;当销售价在一定范围时,销售商只需调整各周期服务水平,而当销售价过高或过低时,销售商则需同时调整各周期服务水平和订货次数  相似文献   

14.
为准确优化快递配送路径,建立了基于时间窗的快递配送路径优化的数学模型.提出改进AHP-GA算法对多目标配送车辆路径进行优化,利用中位数层次分析算法对多个子目标进行权重系数配比,避免了极端值的影响,从而将多目标优化问题转化为单目标优化问题.通过简单的自然数对车辆路径进行编码,避免了路径重复.考虑了客户对车辆到达时间窗要求,包括车辆在约定时间之前到达获得的机会成本、在约定时间之后到达的罚金成本.最后,本文以1个配送中心,20个服务客户为例,对构建的数学模型通过分别使用传统的GA算法和使用改进AHP-GA算法进行优化,仿真结果表明,利用改进AHP-GA算法进行多目标配送路径优化,可以更加高效地求得问题的最优解.  相似文献   

15.
This paper focuses on the development of a multi-objective lot size–reorder point backorder inventory model for a slow moving item. The three objectives are the minimization of (1) the total annual relevant cost, (2) the expected number of stocked out units incurred annually and (3) the expected frequency of stockout occasions annually. Laplace distribution is used to model the variability of lead time demand. The multi-objective Cuckoo Search (MOCS) algorithm is proposed to solve the model. Pareto curves are generated between cost and service levels for decision-makers. A numerical problem is considered on a slow moving item to illustrate the results. Furthermore, the performance of the MOCS algorithm is evaluated in comparison to multi-objective particle swarm optimization (MOPSO) using metrics, such as error ratio, maximum spread and spacing.  相似文献   

16.
企业对产品进行创新改进,带来装配线上装配任务的变化,从而造成已平衡装配线的失衡。针对上述变化给企业混流装配线带来的影响进行了研究,以最小化生产节拍,工作站间的负荷,和工人完成新装配任务的调整成本为优化目标去建立混装线再平衡的数学模型。并设计了一种新的多目标粒子群算法求解模型,算法中引入各粒子动态密集距离去筛选外部文档的非劣解和指导全局最优值的更新,在控制解的容量同时保持Pareto解集分布均匀。此外,引入变异机制,提高了种群的全局搜索能力。最后,结合具体实例的验证表明,该改进多目标粒子群算法能有效地解决混装线再平衡问题。  相似文献   

17.
闫芳  彭婷婷  申成然 《控制与决策》2021,36(10):2504-2510
选址-路径问题是供应链管理和物流系统规划中的一个重要问题,对总成本具有十分重要的影响.对考虑配送中心容积约束的带时间窗的选址-路径问题进行研究,建立以总成本最小和客户满意度最大为目标的多目标规划模型,提出两阶段算法对其进行求解.首先,利用k-means聚类算法确定配送中心选址;然后,提出一种基于时间-空间双因素的客户划分方法以确定配送中心所服务客户;最后,利用粒子群算法对各配送中心的配送路径进行规划.数值算例表明,所提出的算法较其他已有算法,均能有效地降低物流运作总成本及总配送路径长度,为解决带容积约束及时间窗的选址-路径问题提供了一种新的解决思路.  相似文献   

18.
This paper proposes a novel multi-objective model for an unrelated parallel machine scheduling problem considering inherent uncertainty in processing times and due dates. The problem is characterized by non-zero ready times, sequence and machine-dependent setup times, and secondary resource constraints for jobs. Each job can be processed only if its required machine and secondary resource (if any) are available at the same time. Finding optimal solution for this complex problem in a reasonable time using exact optimization tools is prohibitive. This paper presents an effective multi-objective particle swarm optimization (MOPSO) algorithm to find a good approximation of Pareto frontier where total weighted flow time, total weighted tardiness, and total machine load variation are to be minimized simultaneously. The proposed MOPSO exploits new selection regimes for preserving global as well as personal best solutions. Moreover, a generalized dominance concept in a fuzzy environment is employed to find locally Pareto-optimal frontier. Performance of the proposed MOPSO is compared against a conventional multi-objective particle swarm optimization (CMOPSO) algorithm over a number of randomly generated test problems. Statistical analyses based on the effect of each algorithm on each objective space show that the proposed MOPSO outperforms the CMOPSO in terms of quality, diversity and spacing metrics.  相似文献   

19.
In order to implement sustainable strategies in a supply chain, enterprises should provide highly favorable and effective solutions for reducing carbon dioxide emissions, which brings out the issues of designing and managing a closed-loop supply chain (CLSC). This paper studies an integrated CLSC network design problem with cost and environmental concerns in the solar energy industry from sustainability perspectives. A multi-objective closed-loop supply chain design (MCSCD) model has been proposed, in consideration of many practical characteristics including flow conservation at each production/recycling unit of forward/reverse logistics (FL/RL), capacity expansion, and recycled components. A deterministic multi-objective mixed integer linear programming (MILP) model capturing the tradeoffs between the total cost and total CO2 emissions was developed to address the multistage CSLC design problem. Subsequently, a multi-objective PSO (MOPSO) algorithm with crowding distance-based nondominated sorting approach is developed to search the near-optimal solution of the MCSCD model. The computational study shows that the proposed MOPSO algorithm is suitable and effective for solving large-scale complicated CLSC structure than the conventional branch-and-bound optimization approach. Analysis results show that an enterprise needs to apply an adequate recycling strategy or energy saving technology to achieve a better economic effectiveness if the carbon emission regulation is applied. Consequently, the Pareto optimal solution obtained from MOPSO algorithm may give the superior suggestions of CLSC design, such as factory location options, capacity expansion, technology selection, purchasing, and order fulfillment decisions in practice.  相似文献   

20.
This paper presents a new model and solution for multi-objective vehicle routing problem with time windows (VRPTW) using goal programming and genetic algorithm that in which decision maker specifies optimistic aspiration levels to the objectives and deviations from those aspirations are minimized. VRPTW involves the routing of a set of vehicles with limited capacity from a central depot to a set of geographically dispersed customers with known demands and predefined time windows. This paper uses a direct interpretation of the VRPTW as a multi-objective problem where both the total required fleet size and total traveling distance are minimized while capacity and time windows constraints are secured. The present work aims at using a goal programming approach for the formulation of the problem and an adapted efficient genetic algorithm to solve it. In the genetic algorithm various heuristics incorporate local exploitation in the evolutionary search and the concept of Pareto optimality for the multi-objective optimization. Moreover part of initial population is initialized randomly and part is initialized using Push Forward Insertion Heuristic and λ-interchange mechanism. The algorithm is applied to solve the benchmark Solomon's 56 VRPTW 100-customer instances. Results show that the suggested approach is quiet effective, as it provides solutions that are competitive with the best known in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号